THE DYNAMICS OF £ TWO MAS S SYSTEL. |
FORWARD.,

The following is presented in a form which I believe can be read and understoqc
by almost any interested person, The mathematics used in the argumentsg
presented is straizhtforward and simple enough so that it should net prevent‘ar
interested person with a reasonable general education frem with application,
reading, understdnding and passing judgement on the worlk,
In examining the followin% it should always be remembered that to say that gn
hypéthesis is éorreet Reans no mere than to say that the consequences deriveg
from it are eonfirmed by experiment and observation, Impeccable mathematicg
and logie means nothing if applied to false premises, Provisional hypotheseg
such as derived below can only be elevated to the status of working
hypotheses if all of the conclugions derived from them agree without
exception with observation, "Rubbish in, rubbish out" applies as much in
general scientifie investigation as it does in eomputing,
This work is divided into three pérts as follows:

1). An introdﬁction. This is just a list of the anomalies observed in the current

1

theory of gravitation "° " which led the author on to furthervinvestigation.

2). The actual investigation, Thig is divided into seetiens with headings indieati

however)in cases where the procedures required are long enouzh and involved enough
to cause distraetion in the continuity of the presentation, full Justification is
detailed in the Appendix, 'C;oss references from the sectioﬁs to the relevant
Parts of the appendix are provided in the seetions where needed,

z). The appendix, Here the general mathematicg)on'which the conclusions are based

is presented,

The author makes no claims for the econclusions and provisional hypotheses derived
. o .

in the following work other than that they warrant testing according te strict

scientific methed as indicated above, Those Passing these tests must warrant

elevation to the status of work%gg hypotheses.

//122222%2229 M, Sims,
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THE PROBLEM: The following list of anomalies have been observed regarding

the inverse square law and the first law of motion,

1), The sun raises a tide which is only 46% of that raised by the moon vet
calculations based on the inverse square law and the relevant data indicate
that the solar tidal influence should be about 165 times greater than the
lunar tidal influence., See below:

Data derived from "Physical and Chemical Constantsﬁ by Kaye and Laby,

Solar mass : Earth mass = 330,000 : 1,

Earth mass : Lunar mass = 85,1 : 1, so Lunar mass : Barth mass = (1/85.1) : 1,

Solar distance 92,000,000 miles,

Lunar distance 228,000 miles, -

According to the inverse square law: F = K.M1.I'/I2/d2

Therefore the force of gravitational attraction between the sun and the earth

should be X X 330,000 X 1 / (92,000,000)%.

and the force of gravitational attraction between the moon and the earth should be
KX (1/85.,1) x 1/ (228,000)2

So the ratio of the solar attraction on the earth to the lunar attraction on

£

the earth is: K X 330,000 X 1 / (92,000,000)? 330,000 X 85,1 X 228,000

KX (1/85.1) X 1 / (228,000)° 92,000, 0007

2

= 165 80 the sun should have 165 times the attraction on the earth than
should the moon,

Now, everylody knows that tides on the earth are said to be caused by the
attraction of the sun and of the moon,. While nobody claims that the height of
the tide is linearly proportional to the gravitational attraction, it is
obviously beyond the realm of possibility that a smaller gravitational
attraction could raise a bigger tide than a bigger one, However that is
exactly what we seej~ the solar tide is only 46% of the lunar tide.despite the
fact that according to the inverse square law the solar attraction is over

165 times the lunar attraction, Thus the inverse square law, when applied to

valid data does not produce results that agree with observation,
Fe e A RN

I note that the lunar angular velocity relative to the earth is 13 times the
solar angular velocity relative to the earth and that the square of 13 is 169,
This suggests that the tidal effect may be related to the relative angular KEs
as these are determined by the squares of the relative angular velocities,

In ¢ther words, the tidal effect may be a phenomenon in the realm of dynamics

and not one in the realm of statics as it would be if determined by the inverse
square law, This possibility will be examined later in the work,



2). According to the inverse square law the mass balance should be in
unstable equilibrium yet we see it in stable equilibrium, gs seen below.

ig. 1 shows the mass balance with exactly equal masses in each scale pan,

When the pans are horizontal they are both at equal distances d from the center

ity f on each is F = M /dz.
of the earth and the gravity force = Yearth® mass P
vr"/'
Fig . 1 . - ~ ).%L
. e Fige 2.
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Fig. 2 shows the position when the pans are displaced so that the dggtance

from the center of the earth to %?n a is increased to d + A d while the
o pan
distance from the center of the earth is reduced to d - Ad. Then the

gravitational force on pan a is M /(d + éﬁd) while the force on

2
earth mass/(d ‘ﬁdJ *

. : - 2
. . N
Since M carth® mass/(d + zﬁd) is obviously less that Mearth'“mass/(d - A d)

in this situation pan a should rise and pan b should lower, rotating them

earth® mass
pan b is M

into vertical alignment, DBut this is not what we actually s;e in the real
world., Instead of rotating into vertical alignment they rotate to horizontal
alignment and come to stable equilibrium there,

Thus, we again see the application of the inverse square law produce a

conclusion that does not agree with observation in the real world.

W e e e e e R KoK K

3). F = G.M1.M2/d2 the formula for the force of gravitation does not have the

dimensions of a force and is thus invalid. See below:

I notice that some physics textbook authors do not include reference to
dimensional analysis in their courses. Thus some readers of this matter may
not be familiar with dimensional analysis so at riéht I attach a photocopy of
a page introducing the subject, ,

M.L,17° while,
according to the law of gravitation the force of gravity is F = G.MT.Mz/dz,

Since G is a constant the dimensions of the force of gravity (F) = Me .12,

It will be seen from this that the dimensions of force (F)

i

Thus the force of :;ravity does not qualify as a valid force and cannot be
equated with, added to or subtracted from any valid force. Under these

conditions it can have no valid standing in physics.

-



MECHANICS.

DIMENSIONS. ’ \Z{

(This section may be omitted on first reading, unless dealt with.
in your classes. But a knowledge of the section is frequently of ™
help in the solving of problems.) .

The relationship between derived quantities and fundamental
quantities, and so also that between derived and fundamental units,
can conveniently be expressed by means of dimensional formule
and equations.

(M), (L), and (T') represent the quantities mass, length and time,
without regard to magnitude. Thus a velocity, which is essentially
derived from a length divided by a time, is dimensionally %l—;
and is written (L)(T)~1. As the drawing of the cages for the letters

is a nuisance, we usually disregard them, and put LT-.

‘ Acceleration being a velocity divided by a time, has the dimensions
-1
LT , .., LT2,

T ,
Writing (¥) for the dirhensions of force, we know (Table I, p. 15),
or will shortly know, that F' o«c M a, where a is the acceleration produced.

Hence ng:M.LT—2
80, oct'.s. able I, page 15.)

So (W)=MLT-2xL=ML*T-2, giving the dimensions of the
quantity (work). Similarly the dimensions of any other quantity
‘may be obtained. -

Two physical quantities which have different dimensions cannot

different dimensions; for instance, a mass can never be equal to a
Iengfﬁ, nor a torce to a velocity ; neither may we add a force to a
velocity.

Thus in all physical equations the dimensions of the terms on
the two sides of the equation must De the same.
For example, to convert one system of units to another the

dimensional method may be used. To derive the relationship
between the joule and foot poundal the method is as follows:

1 foot poundal M L2T'-? in British units
1 erg " M L2*T-? in c.g.s. units

_4B4 (30:5)2 (1)~ .

| = X X gm—i22x10

.1 foot poundal =422 X102 ergs =4-22 X102 joules.

(Taking 1 foot as equal to 30-5 ems., and 1 pound as equal to 454 grms.
See p. 28.) '




4). A serious error is revealed in the logic and in the procedure by which S
Newton is said to have derived the inverse square law. The two pages below

are from a publication detailing the way in which he is said to have done so,

Newton did not treat his apple in the same way in which he treated the moon,
He correctly allowed that the moon 1s rotating with a period of 27.3 days

at an average distance of 3.84 X 108 meters but he totally ignored the

fact that the apple just above the surface of the earth is also rotating,

in this case with a period of 1 day at a distance of 6.38 X 106 meters,

If he was going to argue that the moon's rotation induced a centrifugal
force of Mmoon X 2,73 X 10-3 he should also have calcﬁlated the centrifugal
force on the apple due to it's rotationj~ as follows:

. ‘ 6 . - =
T = 6.38 X 10 meLers.. T ooon = | day = 24 X 3600 secs.,

Then v

apple = circumference of orbit / period = 2.,pi.r/T = 2.31 X 10° mete.s/sec,

Thus the centrifugal force on the apple = Il X V2 /

apple apple rapple

X 2312/ (4,38 X 106) =M X 84,2

I"Ia,pple apnle
Thus Hewtoi's hypothetical gravitational attraction w»o 1d have to prod:ce an
acceleration of 84,2 ueters per sec2 just to ceep the apple in orbit

before it started to accelerate it toward the center of the earth, As this
regsidual acceleration is observed to be 9,81 meters / se02 the actual
acceleration produced by the egrth's attraction must be 9.,8%+ 84.2 = 94 H/secz.
How, the ratio of the lunae distaice to the earth's radius is 3.84 X 108/ 6,39 11
= 60, Thug for the inverse square law to hold as outlined above the

centripetal acceleration at the moon would have to be 94/602 = 2.6 X 1072 m/seo2
and not 2,72 X 10~3'h/se02 as calculated according to the lunar period and
distance, Therefore Newton failed to correctly establish the validity of

the inverse square law using this method,

"
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A serious error is revealed in the logic and the

.
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procedure by which Newton is said to have derived

the inverse square law .
The two pages below are from a publication detailing
the way Newton is said to have done so,
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Table 7.1

Planet Mean radius of orbit Period of revolution
r T
(metres) (seconds)
Mercury 5.79 x 10!0 7.60 x 10° 3.36 x 1018
Venus 1.08 x 10" 1.94 x 107 3.35
Earth 1.49 x 10" 3.16 x 107 (1 year) 3.31
Mars 2.28 x 10! 5.94 x 107 (1.9 years) 3.36
Jupiter 7.78 x 10! 3.74 x 108 (11.9 years) 3.36
Saturn 1.43 x 1012 9.30 x 108 (29.5 years) 3.37
Uranus 2.87 x 1012 2.66 x 10° (84.0 years) 3.34
Neptune 4.50 x 102 5.20 x 109 (165 years) 3.37
Pluto 5.90 x 1012 7.82 x 109 (248 years) 3.36
7

Kepler's three laws enabled planetary positions, both
past and future, to be determined accurately without
the complex array of geometrical constructions used
previously which were due to the Greeks. His work was
Uso important because by stating his empirical laws

(i.e. laws based on observation, not on theory) in
ynathematical terms he helped to establish the equation
28 a form of scientific shorthand.

rravity and the moon

+ epler’s laws summed up neatly how the planets of the
5 alar system behaved without indicating why they did
52 One of the problems was to find the centripetal
';.a rce which kept a planet in its orbit round the sun, or
7 v€ moon round the earth, in a way which agreed with
wpler’s laws.
Newton reflected (perhaps in his garden when the
4 pple fell) that the earth exerts an inward pull on
nwarby objects causing them to fall. He then speculated
w nether this same force of gravity might not extend out
4e ther to pull on the moon and keep it in orbit. If it
«w~» Might not the sun also pull on the planets in the
,« *1€ Way with the same kind of force? He decided to
‘L,ﬁ-.;the idea first on the moon’s motion—as we will do
NGW ,
i “v is the radius of the moon’s orbit round the earth

st Tis the time it takes to complete one orbit, i.e. its

r=2384 x 108 m
T = 27.3 days
= 27.3 X 24 x 3600 s

(The time between full moons is 29.5 days but thl%&
due to the earth also moving round the sun. The mogH
has therefore to travel a little farther to reach the s
position relative to the sun. Judged against the b
ground of the stars, the moon takes 27.3 days tom
one complete orbit of the earth, which is its true period;
T.) |

The speed v of thé'moon along its orbit (assumed
circular) is ’

Y= circumference of orbit - 2m:r
period T
_ 27 X 3.84 x 108

27.3 X 24 x 3600
=1.02 X 10® ms-!

The moon’s centripetal acceleration a will be

_ V2 _ (1.02 X 10° m s—1)2
r 3.84 x 108 m

=272 X 1073 m s-2

a

-

\\v moon. The simplest assumption would be that gravit'y.', .
Earth \ halves when the distance doubles and at the moon it
G\/OMoon would be 1/60 of 9.81 m s=2 since the moon is 60"
rol earth-radii from the centre of the earth and an object at -

the earth’s surface is 1 earth-radius from the centre.

_ But 9.81/60 = 1.64 x 10-! m s=2, which is still to0

20 large.
Hewbos cid mot treat his tpole in the sans vry that he trea

-- tihie moon,
Ve
He Lowed corcectly that the
of 27.3% days at a diste. ce of

totally ignored ths “act that

moon is rotating with a pa+wiod
3,84 X 108 meters ..av e
the apple just above the

ing, i i ith a
N i rotating, in this case w1l
surface of the earth is also Tro £y b



The next relation to try would be an inverse square
blaw in which gravity is one-quarter when the distance
doubles, one-ninth when it trebles and so on. At
he moon it would be 1/602 of 9.81 ms-2, i.e.
9.81/3600 = 2.72 X 1073 m s~2—the value of the
moon’s centripetal acceleration.

Law of universal gravitation

Having successfully tested the idea of inverse square
aw gravity for the motion of the moon round the earth,
Newton turned his attention to the solar system.

. His proposal, first published in 1687 in his great work
he Principia (Mathematical principles of natural know-
edge), was that the centripetal force which keeps the
lanets in orbit round the sun is provided by the
avitational attraction of the sun for the planets. This,
ccording to Newton, was the same kind of attraction
gis that of the earth for an apple. Gravity—the attrac-
ion of the earth for an object—was thus a particular
ase of gravitation. In fact, Newton asserted that every
bject in the universe attracted every other object with
gravitational force and that this force was responsible
or the orbital motion of celestial (heavenly) bodies.

' Newton’s hypothesis, now established as a theory
nd known as the law of universal gravitation, may be
tated quantitatively as follows.

e

Every particle of matter in the universe attracts every
'fher particle with a force which is directly proportional
) the product of their masses and inversely proportional
the square of their distances apart.

i The gravitational attraction F between two particles
masses m, and m,, distance r apart is thus given by
F=cglm

r? r?

here G is a constant, called the universal gravirational
stant, and assumed to have the same value every-
nere for all matter.

Newton believed the force was directly proportion-
0 the mass of each particle because the force
a falling body is proportional to its mass
= ma = mg = m X constant, therefore F o m),
i 1o the mass of the artracted body. Hence, from the
iird law of motion, he argued that since the falling
fody also attracts the earth with an equal and opposite
gorce that is proportional to the mass of the earth, then
‘i gravitational force between the bodies must also be
goportional to the mass of the attracting body. The
éon test justified the use of an inverse square law
Elation between force and distance.
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The law applies to particles (i.e. bodies whose dimen-
sions are very small compared with other distances
involved), but Newton showed that the attraction ex-
erted at an external point by a sphere of uniform
density (or a sphere composed of uniform concentric
shells) was the same as if its whole mass were concen-
trated at its centre. We tacitly assumed this for the
earth in the previous section and will use it in future.

The gravitational force between two ordinary objects
(say two | kg masses 1 metre apart) is extremely small
and therefore difficult to detect. What does this indic-
ate about the value of G in SI units? What will be the
units of G in the SI system?

Testing gravitation

To test F = Gmym,/r? for the sun and planets the
numerical values of all quantities on both sides of the
equation need to be known. Newton neither had
reliable ififormation about the masses of the sun and
planets nor did he know the value of G and so he could
not adopt this procedure. There are alternatives
however.

(a) Deriving Kepler’s laws. The behaviour of the
solar system is summarized by Kepler’s laws and any
theory which predicts these would, for a start, be in
agreement with the facts.

Planet .~ ™~

Fig. 7.21

Suppose a planet of mass m moves with speed vina
circle of radius » round the sun of mass M, Fig. 7.21.
Hence

gravitational attraction of sun for planet = G-@
2

If this is the centripetal force keeping the planet in orbit -
then

Dimensions % pm-. my2 Invalid

of L.H.S j;ﬂ=£ﬁt equation.
- . : LRSN ] m‘_'f" See 5 .
invalid, i . e e

r

i If T is the time for the planet to make one orbit, t
V= 2.pi.x/T so Gub/r = 4.pi%.r2/T° go .M = 4.2i%,07/12 5o £3 /72 .
where X = G.I‘-'I/4.pi2. Newton claimed that this result verified l"’I1 .M;

While the above demonstration appears convineing on the surface,
closer examination shows that since G.l"-‘Im/r2 is not a wvalid

formula for a force (see 3, above) it cannolt validly be used in
the above equation, so the conclusion that :['5/T2 =
4 valid derivation of the r2/T? =

K is invalid,
X relationship will be

provided later using premises unrelated to the law of gravitation.



5). The Tevolution of satellites around their primaries is explained according 5
to the #aw of gravitation and first law of motion. Detailed analysis of this
explanation reveals that, far from keeping the satellite in orbit, the law of

gravitation would cause it to spiral in to the primary, as shown below.

R
FIG.5 Third B

second, .
— Second
Fourth second, '
secondlf P A
o \\J/&\\\
. l Al ! \\
\\ First
‘ , \. second,
a | AN
i Pl .
v
Moon ®
\\ Fig. 5 .20 opposite purports to explain
) the rotation of a satellite around it's
primary,according to the first law of
motion and the law of gravitation,
! Fig.‘f' indicates what would actually
i happen under these conditions using the
E data in the previous pages on the earth
i and the moon,
E g%,_-u——-““’ If the moon starts at position A it would
| S .
Fic. D -20. The Earth's proceed to position A' through a distance

l Revolution Explained by the

. of 1,02 X 103 meters in 1 sec, according
i Laws of Motion. At the po-

sition E the earth if undis- e the first law of motion, In the same tin
. turbed would continue on to Earth . . .
\ 4, by the first law of motion. it would be accelerated by gravitational
It arrives at E' instead, hav- .
ing in the meantime fallcn to- attraction toward the center of the eartt

ward th i . .
\ ré the sun the distance £B. through a distance determined as follows:

v=u+gt and s = ut + %.a.tz BO
s =0+ %, 2.72 X 10_3 X 12 = 1,36 X 10-3 meters, bringing it back on orbit at 2

3o far so good, but now look what happens in the second sec.
The moon's velocity toward the earth is now v = u + gt = 0 + 2,72 ')(10_5 £
= Z,72 X 1O~3 meters/secz. siote that the moon's instantaneous tangential
velocity, V has not been changed during the first sec., but that it's velocity
toward the center of the earth v has increased from 0 to 2,72 X 10-5 m/sz,
because of the acceleration due to gravity. Thus during the second sec., the
moon would move through a distance of 1,36 X ’IO_3 meters to B' according to the
firset law of motion but because it had a velocity of 2.72 X 10_3 m/s2 at the

- “§tart of the second sec it would travel through a distance of s = u.t + %.g.t2

1

=2.72 X107 x 1 4+ 3 X 2,72 X 1073 x 12 _ 3/2 X 2,72 X 1077 peters.
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tote that this distance is three times too far to bring the moon back to itrg

3

orbital distance and ieaves it 2.72 X 10 meters inside it's orbital distange

Similarly it can be shown that at the end o’ the third second it will be

2.72 X 10"j X 2 meters inside the orbital distance a-d t.at in geneval =fte-

= C N

I seconds it will be 2.72 X 10~5 @ (H_1) meters inside the orbital distance

and so that 1t would graduall;

.

spiral into tie earth,

Trom the above discussion it is obvious that the only way in which a combination
of the first law of motion and the law of gravitation could produce a stable
crbit would be for the gravitatienal attraetion to act for just one second and
then be swiched off, leaving the moon's velocity towards the center of the

earth at 1.36 X ‘]Om3 meters per second, v

SI5CE TEIS ISIIFOSSITLE VWi wUST CONC UL THAT 72273 ARY CTEIR FAJTORS

OFBRATING 1C Ld4EP THE FPLANETS WTC, 1I THEIR ORBITS.

e RS N K W

G). One of the firét ways thought up to teast Newton's theory of gravitation
was to hang aAblumbob dowh the face of a cliff so that the great mass of the
stone on one side of the bob would be far greater than thé mags of air on the
other side, Then, as the bob was brdught closer to the stone face, it should
at some stage be attracted out of the vertical, toward the face,

Although the experiment was conducted many times the

bob was always found to hang vertically no matter how

close it was brought to the stone; even a separation

No matter how
close the bob is
brought to the
stone face it
always hangs
vertically.

o force of
attraction is ever
demonstrated,

Cﬂiff top. ) of less than 1mm brought no deviation from the vertical

Protagonists of the theory apparently found it

convenient to ignore this result,
STONE ATR, ’




CABE O THE PHANTONM &l
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According to the current theory of gravitation, the sravitational force between,
say the earth and the moon, is equalled by the centrifuzmal force due the the

noon's rotation, thus keeping it in stable orbvit., Since the moon's centrinetal

3

meters/sec and it's wass is Il gms, the equivalent force
1

acceleration is 2,72 X 107

keeping it in orkit is 2.72 X 10
—————— "*'.—h - -
|

£ M dynes, The figure opposete indicates the

distance throuch which this foree mnust onerate over one

lunar revolution., This equals 4 times tle orbital ra?ius
Since M#F.S the work that the above force must do over
1 lunar revolution would have to be:
k272 x 1070 23,84 % 1079 2 2,16 % 1079 epps.,

Hote that after one couplete revolution the moon is in
osition and with exaetly thé same velcclity that it had at the

. . . . iy s - 10 , s
beginning of that cireuit, “his means that 4.16 ¥ 10 ergs liag been expended
© (&) ) (& A

exactly the same

Just to maintain the status quo. 1f the efficiency of this operation is measured
as: the change achieved/the energy expended = 0/{4.16 X 1010)= 0. This sort of
result would make planetary systems the most ineffieient maehines ever produced.

Where does all of this energy come from ?, iHobody knows. Where does it go ?. 777979,
According to the laws of thermodynamiecs, when cnergy is Jissipatzd it raises the
temperature. In this case, no heating in the solar system is observed alvhough th:
energy dissipation appears to be going on continually over a&ll of the orbits of
all of the planets and all ol the satellites that it eontains.

dAccording to the law of conservation of energy, energy can neith%r be created nor
destroyed, but here we see it uysteriously destroyed and then reereated over

each cyele in every orbit, As this is obviously impos=ible some other exnlanatior

nust be found te satisfactorily explain the behaveior of bodies in the solar svste:

[ TR T AL LA VI LR,V JLY A V01 0 LT A Y 2 S LA VIRV R PR
A Mo de o e o He D6 I S K Wt

iewton can hardly be held responsible for not realising that this explanation of
planetary motion violated the law of eonservation of energy since neither the
concept of energy nor of it's conservation existed in his time. Thomas Youn_
first ﬂeveldped the concept of energy and in 1863 he ‘emonstrated (approximately)
that the energy of a mass is proportional to the square of it's velocity,

The law of conservation of energy was not articulated until the 1850g when :ileyer 4,
Helmholtz arrived at it independently of each other, about 150 years after the

publication of the Principia,



8). A Defieiency in the Wording of the First Law of lotion., /V

Newton stated the first law of motion as follows:
"A body continues in a state of rest or of uniform motion in a straight line

unless it be acted on by a*external impressed force to change that state."

In view of the fact that he stated his second law as:

"The time rate of change in momentum is proportienal to the impressed force
and takes plgce in the direction in which that force acts," I have wondered
why he did net state his first law as follows:

" The momentum of a beody remains censtant unless it is acted upon by an

external impressed force to change that momentum,”

Linear momentum equals m.v and since v is a veetor and net a scalar quantity,
momentum has direction. Se "uniform meoetion in a straight line" means the same
p v
thing as "constant linear momen4um and the two versions of the first law would

mean the same thing, at least in the case of "econst,nt linear momentum",

I think that a possible reason that he echose the version that he did was due to
the fact that in 1687, mueh of the scientifie infrastructure which we take for
granted, did net exist so he had a problem in cemnunication., Very few people

at the time would have understood the difference between scalar and vector
quantities, so he intreduced Galileo's Italian word for speeq, velocith, ywhich he
wrote as "velocity", to differentiate between the scgelar "speed" and it's

vector equivalent. Then, to make sure that nobody remained cenfused, he chose to

emphasise the directional aspect of his proposition he includgd "in a straight line
P

This caused no problem as long as he was dealing with linear veloecity and linear
momentum., Unfortunately, he never formally investigated retational pmementum in
the same way that he investigated linear mementum, In fact there is no evidence
te show that he ever develeoped the ceneept ef rotational momentum,

If he had dene se he would have realised that the rotational analog of linear
velocity, that is, "the instantaneous tangential velocity", could NOT have
constant directien because it is at right angles to the rotating radius vector

and se it must retate with the radius vector.

If Newton had chesen alse to state his third law in the form:

"For any change in momentum there is an equal and epposite change in momentum",

his three laws in this alternate form would have censtituted an elegant statement
ef the lay ef conservation of momentum (and hence energy), which he obvieusly
understoed but never femally articulated, If he had dene this, he weuld have
realised the existance of the anomalies listed above.,

His percieved need to postulate a gravitational ferce as in case 5, to accelerate
a mass from it's straight line destination to one on it's orbit (expending energy
in the process) would have been seen te be unnecesg,rys THE LAW OF CONSERVATION

CF ROTATIONAL MOMENTUM wOULD HAVE DONE IT FOR HIM WITHOUT THE EXPENDITURE OF ENERG)



@

If this conclusion is cerrect it must bring inte serious doubt both the law of
gravitation and the applicability of the first law of motion in it's present

form for rotational dynamics. . o o
The idea that masses, if undisturbed, travel in straight lines, is intuitive

but there is almogt no evidence te support this hypothesis, found in the real
world. In the seolar system, masses follow conie lecii while further out we see
s variety of ferms such as spirals, dises, sembrere hats, cleuds and spheres etc
but we never see patterns indicating that they represent masses travelling in
straight lines, On the next page we see a plate shoying the path of a free
electron in a Wilsen Cleud Chamber which is deseribing a curved path while

there is ne apparent coneentratien ef mass on the cencave side of the path

to induee the curvature seen, as would be requiréd according te the Newtonian

theory of gravitation,
F I KW RN NN KK

At this stage critics may validly point out that I have got two very high
hurdles te get over before I have any chance of getting peeple te believe
that there is ne ferce of attraction between masses. These are:

1), I have to postulate a eredible alternate cause for the acceleration of
the apple.

2). People may alse peint out that Cavengigh in 1796y et al sinee have
repeatedly demonstrated an attraction between masses in the laboratory, using

the tersion balance,
E 2 2

With regard to 1), above; I intend te de just that during the course of this
work, As far as 2). above is ceoncerned: I point out that there was another
nen-gravitatienal facter operating en Cavendish's balance which invalidated
his result, This was the 'Faucault Pendulum Effect", Cavendish would have
been un,ware of this g3her effect because it waé’not demongstrated until the

18508, about sixty years after Cavendish was working,

H WK HHe WK K
I consider that by now, sufficient evidence has been brought ferw,rd te bring
inte serious deubt, the current theory of gravitation and the first law ef

motien in it's present ferm, te warrant a more thereugh seareh for valid

principles of dynamies,



THE INVESTIGATION, - A/

‘Rotatiohal Motion,

As the problem before us is basically one of rotational motion, I will begin
by stating Newton's laws of motion in their alternate form and ag they
apply to rotational motion,

1)._ The rotational momentum of a body remains constant unless it is
acted upon by some external impressed torque to change that rotational

momentum,

2). The time rate of change in rotational momentum is proportional to the

impressed torque and takes place in the same sense in which that torque acts,

3). For every change in rotational momentum there is an equal and
opposite change in rotational momentum, ,
4
HHHR
For two masses orbiting each other in equilibrium the following conclusions

can be drawn from Newton's Laws as stated above:

4), TFor balance, the moments of masses rotating in equilibrium must be equal.
That is, M1 1 0Ty o
two masses are equal is their common center of gravity. Thus for equilibrium

.r, must equal M But the point about whieh the moments of

the masses must be rotating about their common center of gravity.

5) To be in equilibrium the masses must have equal siderial angular
velocities,

6) From 4 above M1.r1 must equal M2.r2 and for equilibrium, from 5

must equal W, so for equilibrium M, ,»r, W oW

1 ) 1°71° 71 2° 2
Thus for rotational equilibrium the angular momenta of both masses

‘above W must equal M

2 L]

must be equal,

T)e For masses to rotate in equilibrium there must be no torque acting
on them, Otherwise, according to 2 above they would be subject to

change in angular momentum an& thus would not be in equilibrium,
XKHR

Now, consider the case of two masses orbiting each other but which are
not in rotational equilibrium. That is, where M1.r
tO M .W

2°Tpe¥se
From 7 above, the masses must now have a torque acting on them which

1.W1 is not equal

will acecording to 2 above, change their angular momenta,

From 3 above the induced changes in angular momenta must be equal and
opposite so the torques acting on each mass must be equal and of

opposite sense,

From 5 and 6 above, the masses must remain under torque until their

* angular velocities are equal and thus until they are in rotational
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equilibriume. -
8) Apcoraing to the:law of conservation of angular momentum the total
angular mwmentum before the change must equal the total angular momentum
aftér the change, so M1.r1 w1 + Ma'”a'“e must = M1.r1.W3 + Mz.rz.w3
where W3 is the equilibrium angular velocity,

But M,.r, = M,.r, so w3 must equal (w1 + w2)/2.

9)s Thus two masses rotating relative to each other but not in rotational
equilibrium will automatically exchange angular momenta until their angular
velocities are equal and they will come to equilibrium at an angular
veloeity of (W1 + wz)/z and at distances from their commenm ecenter of

gravity determined bm'r1/r2 = MZ/M1’
P

10). Ip order to determine how the equllibrium distance is govermed by
changes in equilibrium angular momentum it is only mecessary to examinme
the implications of Kepler's third law.

Consider the case where a third mass M3 is orbiting M1 with angular
momentum MB'”B‘WB in the same way that M2 is orbiting M1. That is,
the case where N2 and M3 are satellites of the primary M1.

In this case Kepler's third law tells us that W /W = K.r23/r33
So Kulzy/r) = (iglur,2)/(w,2.2)2).

So the equilibrium distances of the satellites from their primary are
inversely proportiomal to the squares of their rotational momenta per unit
mass around their primary,

What a surprisej. Another inverse square law relating to the planetary
distances!. Not too mueh should be read into this however,

Sinee a mass does not change it's magnitude as it's momentum and it's
kinetic emergy are changed,

Kolzyfrg) = (5m2)/(0)202,2) = (0/2) (0,22, 2)/(/g) (3,2 1z, 2)

so the equilibrium distanee of a satellite from it's primary is inversely
proportional to it's rotational kinetic energy around that primary,

Obviously also, for satellites of differenmt mass, as is the case in the
solar system, their equilibrium distances are inversely proportiomal to
their rotational kimetie energy PER UNIT MASS around their primary,
Thus, this law can be writtem in several different ways,

Note that since this law is a cordllary of Kepler's third law, it agrees
totally with observation from the solar system,

From the above it can be comcluded that the equilibrium distances of
masses rotating about their commom center of gravity are inversely
proportiomal to their angular kinetie energies per unit mass relative to

each other,
WXR K%






. MAGNETIC FIELDS AND GYROSCOPIC ACTION EXPLAINABLE IN TERMS Of /£%9;
THE ABOVEDESCRIBED ROTATIONAL DYNAMICS. If two masses are rotating as above in
equilibrium with given rotational KEs per unit mass and atorque is applied
changeing their rotational KEs per unit mass, their new equilibrium
distances will be inversely proportional the changes in rotational KE
per unit mass, That is, if the rotational kinetiec energy per unit mass
is increased by a factor F the equilibrium distances will be reduced by a
factor F and if the rotational kinetic energy per unit mass is reduced by
a factor F the equilibrium distances will be increased by the same factor,
FHRXHHNK
By placing the thumb, forefinger and middle f{hger of the left hamd
mutually at right angles it is possible to apply a rule analogous to the
left hand rule of electrodynamiocs to predict the accelerations of the
above masses under changeing rotational kinetie energy. This rule is:
Point the forefinger of the left hand along the axis of rotation from the
direction which makes the rotation appear anticloeckwise,
Then peint themiddle fing in the direction of the applied force on the mass,
The thumb will then point in the direction of the induced-acceleration,
WK
The analogous left hand (motor) rule of electrodynamics is:
Point the forefingexr of the left hand in the direction of the magnetic field.
Then orient the middle finger to the direction of the current in the wire.

The thumb will then point in the direction of the induced motion of the wire,

Now, the current in the wire is really a stream of electrons moveing along
the wire and they would not be moveing as they are unless they were
being driven by an electromotive force, Thus, the middle finger requirement
of the motor rule could be written as: "Orient the middle finger to the
direction of the electromotive force on the eleectrons in the wire",
Now, since the electrons are confined to the wire, if they are forced to
move in a direction at right angles to the length of the wire, they will
obviously take the wire with them. Thus, the result could be written as:

"Fhe thumb will then point in the direction of the induced motion eof the

electrons in the wire".



Attached sheet AA shows what happens when a gyroscope is placed on a
merry-go-round sc that it's axis of rotation is not parallel with the axis
of rotation of the merry-go-round, The axis of rotation of the gyroscope
is always seen to align itself with that of the merry-go-round.,

Barnett showed that when an unmagnetised iron rod is rotated about an axis

A

it is magnetised along that axis, He then concluded that the magnetisation

is caused by the orientation of the axes of rotation of the "molecular
magnetic dipoles" or the "atomic gyrocompasses" in the rod parallel to the
axis of rotation of the rod,by a proscess analogous to the orientation of
the gyroscope on the merry-go-round,

In other words, he showed that the directign of the magnetic field is
really the direction of the axes of rotation of the "molecular magnetiec
dipoles" or the "atomie gyrocompasses" in the magnet,

If we now postulate that these "molecular magnetic dipoles" or "atomic
gyrocompasses" are really just rotating electrons, we can reformulate the
forefinger ;equirement of the motor rule as:

Point the forefinger of the left hand in the direction of the axes of

rotation of the electrons comprising the "atomie gyrocompasses" in the magnet

from the direction which makes the rotation appear anticloekwise.

In this form the forefinger requirement of the motor rule is the same as
that for the rotational dynamics rule, as stated above:

Point the forefinger of the left hand along the axis of rotation of the
masses from the direction which makes the rotation appear anticlockwise,

As shown above, the other analogous requirements of the two rules are:
Orient the middle finger to the direction of the applied force on the mass.,
Orient the middle finger to the direction of the electromotive force on the
electrons in the wire,

The thumb will then point in the direction of the induced acceleration,

The thumb will then point in the direction of the induced motion of the

electrons in the wire,

This, virtually identical nature of the two rules indicates that the dynamics

underlying the motor rule must be the rotational dynamics developed above,

-
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Sheet AA,
Barnett Effect as Experimental Support for Ampére’s Hypothesis of
Molecular Currents

a disk rotating abouyt,
Such g System, endowed with
xample of a so-called gyroscope
ses the following interesting
Ty-go-round M in such g way

Thus ) circulating electrons predicts the possibility of magne-
tizing an iron bar by rotating it. Barnett’s experiment proved successful
and thus confirmed the belief of physicists in the existence of circulating
electrons in atoms,
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Attached sheet AB shows a gyroscope balanced by a counterweight on a

rotatable fulcrum,

According to the Barnett effect, we know that under these conditions the
gyroscope will align itself with the earth's axis of rotation and will
remain aligned with it as long as it remains spinning, However, if the
éounterweight is slipped toward the fulecrum putting downward force on the
wheel, the gyroscope will be seen to move to the right, If the
counterweight is slipped out past the balance point putting upward force
on the wheel, the gyroscope will be seen to move to the left, as shown

in figures 11=-10A and 11-10B,

From the above, it is obvious that a thi;d left hand rule (Gyroscope Rule)
can be postulated predicting the behaveior of gyroscopes under these
conditions:

Point the forefinger of the left hand along the axis of rotation of the
gyroscope from the direction which makes the rotation appear anticlockwise,
Orient the middle finger to the direction of the force on the wheel,

The thumb will then point in the direction of the induced motion of the
wheel,

The virtually identical nature of this rule to the previous two rules
indicates that the dynamies underlying the motion of gyroscopes must

also be the rotational dynamics developed above,

RN KR e .
Figures 11-12 and 11-13 pictorially detail the connection between the

rotational dynamics rule and the gyroscope rule,

WKWK X%

50 far the investigation has been confined to masses initially in

circular rotation, It must now be brogdened to include masses following

con-focal conic locii,












THE GENERATION OF CONIC LOCII FROM CIRCULAR LOCII, A
Consider the case of the application of forces in various directions on two
masses rotating circularly in equilibrium, The possibilities are:

Case (1). Forces can be applied to either or both masses in directions
either directly»toward or directly away from their common center of 8ravity,
See Fig ( ﬁ)}' In this case the forces have no components along the tangent
and so they cannot act as torques. Thus they cannot change the angular
momenta of tke masses and so they cannot change the rotational equilibrium
condition, These forces will however, displace the masses along their

radii vectors and consequently away from their equilibrium distances. Thus,
when the displacing forces are removed the'ﬁasses must experience accelerationsg
in the directions restoring them to their equilibrium distances, It is

obvious that by the time that the equilibrium distances have been reached

the masses will have been accelerated to velocities along their radii

vectors, In this case their momenta will carry them past their equilibrium
distances and they will experience reverse accelerations which would be
proportional-to their displacements from equilibrium, This mechanism would
obviously set up simple harmonic motions of the masses about their equilibrium
distances, along the line joining them through their common ¢.g., As this

line is rotating with the same angular velocity as that with which the

masses are rotating, the axis of the S.H.M. must rotate with it. That is,

the resultant motion of the masses would be a compound harmonic motion in
which the circular motion ip compounded with a simple harmonio motion of

the same period and with amplitude equal to the maximum displacement

generated by the original displacing force.

Note that the common center of gravity is not moved by the application of
equal and opposite forces on the two masses., If force is applied to only one
mass the common c.g. will be moved in the direction of that force., ILater it
will be shown that the eccentricity induced is equal to the energy of the

induced oscillation divided by the total energy of the induced compound

harmonic motion,
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Case 2, Forees cam be applied to either or both masses at right angles to

those speeified in case (1). That is, they ean be applied tangentially in
which case they will eonstitute a torq::Ag§°;:ée/9//above. There we saw
that under these eirecumstanees, after the torque is removed a new equilibrium
angular veloeity will be established as well as mew equilibrium distances
while the masses acceleratimg toward these distamees will have aequired

veloeities causing them to overshoot, setting up S.H.M.s about the new

equilibrium distanees.,

From eases (1) and (2) it is obvious that the applieation of forees either

alorng the radius veetor or tamgemtially to it will result im a new equilibrium
.

distance with the masses oscillating im S.H.M, about their equilibrium

positions,

Case 3, Forees eam be applied to either or both masses in direetions
meither along the radius veetor nor tamgemtially to it.

In this case, any sueh forees ean be resolved into eompoments along the
radius veetor and along the tangenmt. Thus the applieation of these forces
must alsoe fesult in the establishment of new equilibrium quﬁances with the

masses oseillating in S.H.M. about these new distanees.

From the above, it cam be seen that if two masses are orbiting eack other in
(8 e piesp Boer potaT o

equilibrium, the appliecatiom of ANY force to themAwill reault in the

establishment of . new equilibrium distances with the masses oseillating

in B,HIN; ‘about their mew equilibrium distances along the axis of the lime

joining them through their:cemmon center of gravity, Ag this lime is rotating

with the same angular veloeity as that with whieh the masses are rotating,

the axis of the S.H.M. must rotate with it, That is, the resultant motiom

of the masses would be a compound harmonie motiom in which the eircular

motion is compounded with a simple harmonie motion of the same period and

with amplitude equal to the maximum displacement gemerated by the original

displacing foree,

It would be interesting to kmew if a ecompound harmonie motiom such as that

deseribed above would result im eom-foeal econie loeii for the masses involved.

Appendix (1) is devoted to this investigatiom and it shows that this IS the ease,



ORDERS OF ROTATION AND TWO HYPOTHETICAL LAWS RELATING TO THEM. /;Z

The case discussed above relating to a gyroscope on a merry-go-round
involves rotation within rotation and we see many instances of this
phenomenon in the physical world. The satellité of the planets are rotating
about their particular planet while the planet is rotating about the sun,
Furthermore, the sun itself appears to be rotating about the center of
gravity of our galaxy. Thus, we see rotation‘within rotation within
rotation in the solar system, It might be said that we see several orders
(or degrees) of rotation within the solar system, Accordingly, I will
designate the sun's rotation about the center of gravity of our galaxy as
a first order rotation about the c.g. of ;he,galaxy; the rotation of the planets
about the sun as a "second order" rotation about the c.g. of the galaxy and
the rotation of the satellites about their planets as a "third order"
rotation about the c.g. of the galaxy.

When this is done, it is possible to state two hypothetical laws of
motion relating higher orders of rotation to lower orders of rotation.
The first of these laws, which I will designate "Barnett's Law" in deference
to it's discoverer is: .
When masses have second order rotation relative to a mass with first order
rotation about some axis, the axes of rotation of the masses with second
order rotation will rotate so that they align themselves with the axis of
first order rotation and so that the senses of rotation are the same about
all axes,

There is a lot of observational evidence supporting this hypothetical law,
some of which is:
1). As noted above, the alignment of the axis of rotation of a gyroscope
on a merry~-go-round with the axis of rotation of the merry-go-round,
2). The magnetisation of an iron rod along it's axis of rotation when it
is rotated. As Barnett pointed out, this phenomenon is due to the
reorientation of the "molecular magnetic dipoles" within the iron to the
axis of spin of the rod.

3). The phenomenon of the earth's magnetic field. This was obviously



formed when the originally randomly oriented "molecular magnetic dipoles"

within the iron in the earth's core were oriented to the axis of rol-tion
of the earth, Jjust as in the case of the iron rod above,

4)., A coil of wire carrying a current produces a magnetic field,

If we assume that the electrons circulating in the "molecular magnetic
dipoles" in a straight wire are randomly oriented they could be said to
have only one order of rotation, However, if the wire is coiled into a
series of loops and an EMF is applied across it's ends, the electrons in
the "molecular magnetic dipoles" will be forced to travel around the loops
of wire while they are at the same time in primary rotation., Thuse, they
will be given second order rotation Just éé in the case of the dipoles

in the spun rod,and their axes of rotation will be oriented at right angles

/>

to the plane of the coils, This will produce a magnetic field indistiguishable

from that produced in the spun rod,

5)« This law might be seen to afford a partial explanation of the form
which we now see taken by the solar system,

If the planets with their satellites originally condensed from a swirling
mass of gas around the sun, it might be expected that the résulting
aggregations would be found more or less randomly distributed in three
dimensions and with their axes of rotation also randomly distributed in all
directions relative to the axis of rotation of the sun, However, according
to the above law, the higher order rotations of the planets and their
satellites would, over time, align their axes of rotation parallel with

'the first order axis of rotation of the sun, more or less as we see today,
Tke fact that the axes of rotation of the planets and their satellites are
not exactly parallel with the axis of rotgtion of the sun might be due to
the faet that insufficien time has yet elapsed siﬁee condensation to

complete the process,
FH KK

The phenomenon of the existance of "magnetic fields" and their direction
was explained above, I think that the phenomenon of "magnetic attraction"

can be explained according to another hypothesis which I will designate:
"The second law of higher order rotation" which might be stated as follows:
When masses have higher order rotation relative to a mass with first order

-

rotation about some axis, and after the axes of rotation of the masses with



higher o?der rotation have aligned themselves with the Primary axis of
rotation, the planes of rotation of the masses with higher order rotation /Z
will align themselves with the plane of rotation of the primary mass,

There is some observational evidence supporting this hypothesis, such as:
1). The phenomenon of magnetic attraction. This could be the result of
"molecular magnetic dipoles" who's axes of rotation are aligned, moveing

so as to more closely align their planes of rotation,

2). The application of this law in conjunction with the first law,

seemingly completes the explanation of the form that we now see taken by

the solar system. That is, the planes of rotation of all of the planets

and of their satellites being close to tﬁé plane of the ecliptiec. The

fact that these planes are not exactly aligned with the plane of the

ecliptic, may be due, as pointed out above, to the possibility that

insufficient time has yet elgpsed since condensation, to complete the

The validity of the second law ecould be tested experimentally by
constructing a rotatable frame carrying gyroscopes aligned with the axis
of rotation of the frame and which have freedom of movemen; parallel with
that gxis, Then, if the gyroscopes were set so that their planes of
rotation were not in line and the frame was rotated, it could be observed

if the gyroscopes moved to bring their planes of rotation all into the same

plane, RRRRRKRH



TWO CASES OF THE COMPOUND HARMONIC MOTION INVOLVING AN S.H.M. AND A ROTATION, A/7
IF e equals the ratio of the energy of the S.H.M. to the total energy of the C.H.M.
then e = energy of oscillation/(energy of oscillation + energy of rotation).

In this case, if the energy of rotation has the same sign as the energy of
ogeillation, it is obvious that e must be less than 1.

However, if the energy of rotation has the opposite sign to the energy of
oscillatiom, e must be greater than 1.

When the oscillation and the rotation are in phase their energies will have
the same signs and when the oscillation and the rotation are of opposite
phase their energies will be of opposite signs, corresponding to the above

situation, 4
Thus it might be coneluded that a C.H.M. in which e is less than 1 involves
an oseillation and a rotatiom IN PHASE while a C.H.M, in which e is greater
than 1 involves an oscillation and a rotation which are of OPPOSITEVPHASE.

FHHHH KRN K
A POSSIBLE EXPLANATION OF CHEMICAL AND ATOMIC BONDING AND OF CHEMICAL REACTIONS,
From the above, it is obvious that for all values of e less than 1, that is when the
oscillation is in phase with the rotation, the resulting loeii will be elliptie
and the two masses will orbit each other indefinitely. Thus, they will be

"bonded" together. For values of e greater than 1, that is when the oseillation
is of opposite phase to the rotation, the total rotation will be less thaa
circular by an angle of (2. see-1e)°, so that the two mosses will not be
"bonded" £ogether. Instead, yhey will approach eaech other along hyperbolie
locii to a nearest approach of 2,(e~1) and then will recede along their loeii
to infinity, performing a "pyss" during whieh they are rotated through an angle
of (360 - 2.sec-1e)°.

This observation affords a pessible insight into the nature of chemieal and
nuclear reactions, A ehemical compound is held together by eleetron "bonds" in
which the component elements are held together by pairs of electrons orbiting
each other about their common center of gravity, Since temperature is merely

a measure of the average linear KE of the components of the substande concerned,

if the temperature of a substance is raised above it's decompesition temperature,

it seems that the increased impact between neighbouring molecules may chenge the
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phase of some oscillations, inducing breakup of the rglevant "bonds",

In exothermic reactions, the released elements could become free migsiles,
further raising the temperature of the mass and inducing further breakup,

produeing more heat than was required to produce the change., Bndothermie

reactions could be explained by the hypothesis that the energy required te
change the phase of the origimal oscillatien is greater tham the erergy

released on dissociation,
Wl NN KK
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THE ENERGY RELEASED INTO THE ENVIRONMENT ON TRANSITION FROM A CONFOCAL
ELLIPTIC TO A CONFOCAL EYPERBOLIC REGIME,

Two masses orbiting each other in equilibrium mey have both rotational
and linear (oscillatory) kinetie energy relative to each other., However,
this energy which these masses have relative to each other is not significant
relative to other masses which may be in the viecinity, since they cannot
interact with these other masses, However, it was shewn above, that if

the phase of their oscillation is reversed relative to their rotation, the
masses will part ecompany and go their separate ways along their respective
assymptotes, They may then interaet with other masses in the vioinityz
imparting some or all of their energy whféh they had relative to each other,
to these other masses, Oscillatery KE before transitioen will obviously
convert to linear KE (heat) after transition. Since r.W must remain constant
during transition, as the distance between the original masses increases W
will be reduced in the ratio of 1/r. so that at considerable distances the
masses will be virtually travelling in straight lines along their assymptotes,
The amount of energy required to cause dissociation would depend on the
difference between the ambient temperature of the masses and their
dissociation temperature, which might be the temperature at whiech interaction
between neighbouring elliptic systems is sufficient to cause some phase
reversal, initiating dissociation, At this point in exethermiec reactions
the energy released to the envirinment would be suffiecient to fuel further
dissociation, thus sustaining the reactien,

Conversely, if suffiecient linear and rotational kinetic energy is transferred
from neighbouring systems to two particular masses which happen to be in the
right positions relative to each other, they may- converge along their
assymptotes until they start orbiting each other in stable con-focal

elliptic orbits. It might be inferred that this process is happening from
the observation of some chemical reactions, such as the formation of ammonia
from elemental hydrogen and nitrogen in the Haber-Bosh process, whereby
ammenia is formed from hydrogen and nitrogen under pressure., When the

proeess is up and running, the energy expended on the pump maintaining the

-

partial pressures of the combining gasses in a given time, must be equal to



A 2o

the energy of association of the ammonia formed in the same time, The
energy lost from the external systems must be equal to the energy "tied up"
in the orbiting systems,

Turning to the nuclear fieldjs the energy made available to external

gystems after nuclear dissoeciation was convineingly demonstrated first in 1945,
Obviously, from the above discussion, nuclear association or "fusion" can
only occur if energy from external systems is "tied up" in the orbiting
components of the newly fused nucleus,

I regard the above observations as a more than adequate demonstration that
it is not possible to obtain useful energy from nuclear fusion,

I know of no observational evidence supporting %he assertion that matter

can be turned into energy,

WK KN K
So far we have dealt only with masses 4in relatively simple cirecular and
con~focal elliptie rotation and it is now time te consider the reaetions

of masses in more_eomplicated modes of rotation relative to eash other,
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VARIATIONS OF SIMPLE HARMONIC MOTION, A /

In the selar system we see the planets rotating with constant angular momentum
about their respeetive commen eenters of gravity with the sun, while at the
same time eseillating aleong their rotating diameters with the sun, abeut
equilibrium positiens whiek are not at their centers of retatien but are at
sensiderable distances frem them, with amplitudes whiech are fraetions ef these
distanees, These fraetiens are glways between O and 1 and will be knewn as
their eseillatien faeters and designated as f,
The result of this cembined metien,is that the paths ef the planets are
ellipses, ene of the fesii of each of whieh (s at the cemmen CG, with the
sun, the eccentrieity ef each ellipse beihc equal to it's cerrespending
oeseillatien faeter (f), and where the equilibrium distanee accurs at an angle
of & = ecos £ from the majer axis of the ellipse,

KK
Sinee the abeve situation seems te invelve a simple harmenie motien ef an
unusual type, I will attempt te develop a theory about simple harmenie
motien adapted to the above situatien,

2363 33 W WK%
Figure 1 reoapitulates the standard notien of simple harmonie motien aleng
an axis, generated by a rotatien abeut an origin on that axis, so that at
any time x = sos ©,
It alse intreduees the coneept of an oseillatien faeter, in whick the
displacement aleng the x-axis at any time is f.ees &, where f is the escillatie
faster whieh is taken, as in the selar system as being between O and 1,
This coneept will later be required when we try te aseemedate the investigatien

,

te the reality of the selgr system.
XHWHH AR
It must be ebvieus that displacement frem the equilibrium pesitien ean Just
as easily be measured aleng the retating diameter as it can be aleng the
x-axis, In both eases the signifieant thing to nete is that for simple
harmonic motien, the displaeement frem the equilibrium pesitien at any

angle of retatien, must equal the prejeetien of the rotation at that angle

onte the x-axis. Se in beth cases d = f.eos o






Figure 2, is a diagram of that situation. It illustrates twe eceon-foeal AL
simple harmonie oseillatiens along a retating diameter instead of aleng the

X-axis. One of the oscillatiens, shown in red represents d = cos & while

the other, shown in green represents d = f.eces 6, where 0<f<1, making them
analegeus te the situatien shown in fig. 1.

Weile beth of the oscillations of fig. 1 and fig. 2 are simple harmenie, it
will be seen that the loeii generated in fig.2 are tetally different frem
these generated in fig, 1.

This is beeause in fig, 2 we are dealing with the superimpesitien of a simple
harmonie vscillation ento a simple retatien, thus generating a (oompeund)
simple harmenie metion, In fig. 1 the leeii are cellinear straight lines
aleng the x-axis from +f te -f and viee versa when the osecillation faster is f,
In fig. 2 the leecii are twe ecireles eontigueus at the origin, eentered en

if/2 and of radius f/2, Sinee cos © is pesitive in the 18t and 4th quadrants
the displacement is pesitive there and sinece eos © is negative in the 2nd

and 3rd quadrants the displacement is negative there. Thus when the retatien
is, say antieloekwise, the proecession areund the loeii must be in the direetien
of the arrows shewn in fig., 2.

Fer twe masses oseillating at oppesite ends of the retating diameter their
respective metions would be repregented by d = :(f. 119 9).

It will be seen that the cirecular metiens generating simple harmenie metiens

of oscillation faeter f, must have radii ef f and net of unity,

In beth diagrams the equilibrium pesitien eecurs at angles ef 90° and 270'
where the prejeetien onté the x-axis is zere., In seme future diagrams it

will be seen that the equilibrium distanee ef the oseillatien dees net ocecur

at 90° nor at 270' but ean eccur at other angles. of rotatien, say alpha degrees
and alpha + 180 degrees. Then, for simple harmenie metien, the preojeetien of
the displaeement onte the x-axis would have te be measured from the equilibrium
pesitions at alpha degrees and at alpha + 180 degrees and net frem 90%° or

270® as in figures 1 and 2.

Then for (cempound) simple harmenie motien, the displaeement at any angle €

would have te be d = f.(f,008 © - gos alpha).
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Figure 3 illustrates a situation semewhat but net tetally analegous te thosge
seen in the seolar syatem, In this diagram twe (equal) masses are seen retating
about their eommon CG., while at the same time are exeeuting simple harmonie
eseillatiens about an equilibriuwm distanse whish is net at the eenter ef the
retatien,

The right hand side of figure 3 illustrates an oseillatien of ces © while the
left hand side illustrates an eseillatien ef féetor £ se that r = f,e08 &,

_The oscillatiens are simple harmenie abeut the equilibrium distanse because

they are propertional te eos o,

But leek what happens whenm we measure the displaeement, net frem the equilibrium
distanee but frem the origin at the eenter of rotatien, as we did in figs, 1 and :
In this ease r = 1 + f,e08 © and net f,eos ©, so this escillatien is net

simple harmeniee.

The leeii generated by »r = 1 + ees & and r = 1 + f.,e08 © as shown in fig 3

are of gourse eardieds seo eardeids de not represent simple harmenie eseillations,
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In view of the faet that eerdeid leeii do not seem te represent simple harmonie
oseillations in the aceepted sense, it would be interesting{jm see if a metien
about an equilibrium distanee NOT AT THE CENTER OF THE DEFINING ROTATION ean

be derived whieh IS SIMPLE HARMONIC in the acecepted sense, That is, te see if
the displacement frem the equilibrium distznee aleng the retating diameter ean
be made equal te the prejeetien of that displaeement aleng the x-axis,

fixure 4 illustrates an attempt te de this., In this figure the equilibrium
distanee is taken te be unity and it eecurs at an angle of alpha, so that the
prejeetien of the equilibrium distanee aente the‘x-axis is ees alpha,

Let us now say that we wish te ashieve an esoillat}on faetor of f = eos alpha,
In this ease the prejeetion of the equilibrium distanee at it's angle of
rotatien, onte the x-axis = ees alpha = f,

Sinee the equilibrium distanse was defined abeve as unity, the radius eof
rotatien at any given angle & is r = 1 + & where d is the displascement aleng
the radius at the angle &, and the prejeetien ef r ente the x-axis is

r.e08 € = x,

It will be seen frem fig. 4 that the differense in the prejeetion of r ente
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the x-axis at ©° MINUS IT'S PROJECTION ONTO THE X-AXIS AT ALPHA® ig x-f,

Now, FOR SIMPLE HARMONIC MOTION AS DEFINED BY figures 1 and 2, the displacement
aleng the retating diameter FROM THE EQUILIBRIUM POSITION must be f times

it's PROJECTION ONTO THE X-AXIS, Thus d must equal f,(xz-f).

But » =1 + 4 se r must equal 1 + f£.(x-f) as séh in figures 4 and 5,

Thus, the law for the metions of masses at opposife ends of a rotating diametex
IN SIMPLE HARMONIC MOTION abeout an equilibrium distanse whieh is net at the
origin and of oseillatien faeter f, is given in rectangular seordinates as:
r=2(1 + £.(x=1). This law can be cenverted inte polar eoordinates with

the pole at the center of rotation as fellews:
4

r =1+ f,(x-2) r==(1 + £.(x-£))

=14+ fx - £2 r = -1 -fx + f2

-fox=1- £ r + fux = =(1-£2)
1= (1-£2)/(z=£.%) 1 = =(1-£2)/(z+£.%)
r = r.(1-22)/(z-£.x) r = -r_(1-£2)/(zx+£.x)
r = (1-£2)/(4~ £(x/r)) But z/r = r = =(1-£2)/(1+£.(x/z)) But x/r=cos &
e (1-23)/(1-tees ) r = =(1-£2)/(1+£.008 @)
r = (£.(1-£2))/(£.(1=f. 008 ©)) r = =(£.(1-£2))/(£.(14f.c08 ©))

Where b = (1-£7)/f

r=fn/(1 - fieds ) L..... (1) r = -£.8/(14f.008 ©) ....a (2)

Equations (1) and (2) are of identieal form te these representing ellipses of
unit semimajor axis and eof eceentrieity f. See fig. 5.
r = f.h/(1-f.oes-9) represents an ellipse with the left hand fecus at the origﬁ
while r = -fh/(1+f,e08 ©) represents an ellipse with the right foous at the ori,
THIS CLEARLY DEMONSTRATES THAT THE LOCII OF SIMPLE HARMONIC MOTIONS ABOUT
EQUILIBRIUM DISTANCES OF UNITY AND OF OSCILLATING FACTOR f ARE CON-FOCAL
ELLIPSES, THE POLAR FORMS OF WHICH ARE: r - f,h/(1-f.ces ©) ete. See fig. 5.
It will be shown later that for two equal masses ortiting each other about their
common CG, and oscillating in simple harmonic motion zlong their common rotating

diameter, about eguilivrium distances of unity from that CG, 2nd with oscillation

factor of f, must be con=focal ellipses arranged as in fig,1.8 and with resvective
Ly

instantaneous radii of rctation r = =(1-e"+ex), where x is the displacement from

the common CG, along the major sxis,
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WHY MUST OSCILLATION ABOUT AN #QUILIBRIUM PUSITION BE SIMPLE HARMONIC ?, - H

In an eseillation in whiek kinetie emergy is transformed inte potential energy

and viee versa, the law of conservation of momentum/energy reguires that during
eseillation the total of the momentum/energy be conserved. That is, the change

in kinetie energy must be exaetly equal to and of oppesite sign te the change in
potential energy generated AT ALL POINTS THROUGHOUT THE OSCiLLATION.

To simplify the follewing diseussien I will take the masses involved to be unity,
It was shown above that for simple harmonie oscillation of facter f and eonsequentl
of amplitude f, (where f is between 0 and 1), the equilibrium distanee must oeccur
fét an angle of cos—1f frem the major axis of the oscillatien.

'ﬁerg, since the mass is taken as unity the vel@eity and the mementum are both = f.v
For any displacement aleng the rotating diamé%er fr;m the equilibrium peosition of
Tf;(f—x), (where x is megsured aleng the major axis from the origin at the common
G&.), the velocity and momentum are both £ = (f - (£(f=x) = £(f-x).

' Thus the change in KE over this distanee is fg(f-x)2/2.
. W H N

- New the buildup of linear PE frem equilibrium at f, te £(f-x) = F.s = F.f(f-x)
where P is theAaverage feree raised over fhe distance f£.(f-x).

But for the change in KE to eQmal the ehange in PE, f2(f-x)2/2$ﬁust equal F,s =
a.8 = a.f(f-x),

S0 a must equal £(f-x)/2 for the law of conservation ef energy/momentum to hold,

' ‘des the aeceeleration raised must be linearly propertional to the projeetion of
 fthe displacement from the equilibrium pesitien aleng the rotating diameter onte
the x-axis, sinee (f-x) is a LINEAR expressien,

BUT THIS IS THE CONDITION Foﬁ SIMPLE HARMONIC MOTION,

Sinse it was shewn above that the leoii af.this type of simple harmonie motion

are ellipses and not eardiods. ete. the abeve diseussion illustrates why the paths
of the planets ete, are all ellipses and not cardoids ete, and ratienalises
Kepler's #£/RS7 Law,

The above conditien has universal application in nature; for example the oscillation

of masses about the equilibrium positions of springs ete, are always simple harmonie
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A8S50CTATwl WITH COH=IGC. L -COHIC LOCIT.
Fig, ﬁF6‘Shows that in tie case of both elliptic and hyvperbolic locii;, rotatisn
ocecurs about two separete centers, bots of which lie on the major axes of their
individual conie¢s and which are always a distance of2e apart along that axis,
is shown, in each case, one center could be deseribed as the center (or focus}
of conie rotation, while the other center, at the alternate focus, could be described
as the center of circular rotation,
liote from the figure, that the lengths of the radii from the two centers to the
locii are related in simple ways and that while rotation is in the same sense

4

about both centers in the casge of the ellipse, it is in the opposite sense in the

case of the hyperbola, RN

Fig, 1¥7 opresents substantially the same information as that presented in fig, 1F6
but with the origin for the major axis moved to the alternate foeus in both cases,
Yote that, while in fig. 1F6 only single conics can be accomodated, with the

change included in fig, 1F7, con-focal conics can also be included, In this case,

the alternate focii of fig, 176, become the common focii in fige. 177,
FHHHHN

Fig. 1¥8 elaborates on the situation depicted in fig, 187, for the case of the ellips
Here, two equal masses are postulated at the ends of a rotating diameter, one red
mass and the other green, each following it's appropriate orbiy around their

common Cé. which is at their common focus,

Note that in the following discussion, only masses in con=focal elliptic rotation
are examinedj- no hypothesis isvintroduoed regarding harmonic motion,

It will be seen from fig., 1F8 that the displacement from the equilibrium distance
along the rotating diameter toward the common focus, for the red mass is e.(e~-x)
while at the same time it is ~e.{e-x) for the green mass.

Lote, that for any other rotational funetion except the ellipse, these relationships
could not hold around the orbits and that even for ellipses they could not hold
ULLESS THOSE ELLLPSES WERE CON—-FOCALLY ALIGHED AS SHOWH I¥ #IG. 1F8,

Similarly, the disvnlacement from the equilibrium.distance along the rotating

radius to the ALTERNATE FOCUS for the red mass is always ~e,({e=x} while the same

-












displacement is e.(e—x) for the green mass, 2\5
Looking now at the displacements of just the red mass from it's two relevant focii
Displacement to the common focus is always e.(e~x) while to the alternate focus

it is ~e.(e=-x).

Similarly, looking at the displacements of Just the green mass to it's relevant
focii: displacement to the common foeus is always -e.(e—x) while the displacement
to the alternate focus is always e.(e-x).

liote, that as x passes through e, then (e~-x) changes sign so the corresponding
displacements also change sign,'thus ensuring that all of the above relationships
hold whichever side of e that x happens to be during the cyecle.

From the above discussion it is obvious tha@,for the red mass, the sum of the
displacements along the rotating diameter to it's foecii are zero at any time

and that the sum of it's displacement along the rotating diameter and the
disélacement of it's rotating partner along that diameter is also zero at the
same time, Exactly equal and opposite relationships obtain at the same time

for the green mass,

From above, it is obvious that as long as both masses follow con-focal elliptic
orbits as shown in fig, 178 their net displacements from equilibrium will be

zero at all times and that this happens only if these orbits are followed,

If the sum of the displacements are zero, &a case can be made that the sum of the

squares of the displacements can be zero. This case will be elaborated in the

next section, where the accelerations, velocities, energies of displacement from

equilibrium and the residual energies after displacement from equilibrium

will be examined in the case of HARMONICALLY oscillating con-focal masses.,




27
THE ACCELER&TIONS, VELOCIIIES, LERGIES UF DISPLACHIR T niiD RESIDUAL ENE&GIES’
BOTE PaRALLEL AND }EHPEMDICULAR, 04" HaulOHICALLY OSCILLATIHG COIL -T'OCAL MASSHS

.

Clearly, there are two related éategories of parameter to be examined relative

to this diseussion. firstly, there are the changes jsarallel, due to the
displacement from equiiibrium and secondrarily, according to the law of conservagtis
of energy, there are the equal and opposite changes Perpendicular, in the
equivalent parameters,

The parameters involved will be designated as follows:

Velocity patallel: ﬂ{.

Velocity pernendicular: YL’

Acceleration parallel: aye

Acceleration perpendicular: ay e

.Energy of displacement from equilibrium, parallel: Ed” .
Energy of displacement from equilibrium, perpendicular: Edy .
Residual energy, parallel: E(,.

Residual energy, perpendicular: 3/ R

In developing and testing formulae for these quantities, I will make use of the

&

following data which has been developed independently in various parts of the
investigation, When the oscillation factor f <1, then:
1)e In con~-focal harmonic motion the equilibrium distance is always unity,

2). it thet distance, V. = £ and E, = 2 for a unit mass,

7
2)

= 1,

.3). At that distance, V, = (1-£2)% ana B, = (1-£%). Thus E, + E_L=»f2+ (1-£
4). At that distance a ,must be ~-f or V =O"could rot be .achieved at perihelion.
&% the distances of furthest displacement from equilibrium, that is at perihelion
and at aphelion, r=(1if) and x=(fi1}.

At those distances V, changes sign indicating that béth vV, and E,lmust both be

zero at those points,
Since E“+ El.must equal 1 according to the law of conservation of energys

r

then at those distances i Lotal nnst equal 1.

TRV R VR VRV TRy
P i e il ta i

e energy required to move unit mass over a given

=3

According to basic mechanics, t.
W veu2 i 72 2 2.7 where iy is the average force
distarnces W =2F.s = V =U" so =V ~U7, =245 8y, where i) 2

PD e kv vene g ti ting di ter % ilibrium
lied in tne direction of movement along the rotating diameter, from equ ,
PT g



while Silis the distance along the rotating diameter over which that force ig
applied.  ~rom fig,5 this distance is seen to be f.(f-x, in the direction of
movement along the rotating diameter from the equilibrium distance of 1,

In harmonic motion, the returning force raised is linearly proporticnal to the
displacement from equilibrium ALONG THRE x=-4XT8, which from fig.5 is seen to be f-x,
So the average force rszised over a distance of s,,:f.(f~x) must be c,\f=-x)/2
where ¢ is the constant of proportionality,

It will be seen from fig.5 that this constant is f for harmonic motion s SO0 the
average force raised over the displacement of Sy =f.(f-x) must be f.(f-x}/2.
Thus, the energy of displacement parallel, of unit mass from equilibrium,

Bdjy= W= 2.5 08, = 2.8, (f=x).£.(£-x)/2 = £2, (£-x)2

Since for unit mass E“=V§, then the change in V), over this displacement=f,{f-x%),
AR

‘l'Turning now, to the energy of displacement perpendicular, Edi' That is, to the
change in rotational Ke, due to displacement from the equilibrium position,

From the law of conservation of energy, Edi(+ Edl_must always equal 1, so @g +AEq

fl il
plus Eqi+£3Ed“.must equal 1. But tois can only happen ifaqu ='-ﬂﬂmw-

That is, if Ed, = -f2.(f-x)2 and V4, = ~f(f-x).

c-

Since (-f.(f—x}2 is usually taken to be fz.(f-x)z and not -f2.(f—x}2 we have a
conseptual problem here related to the difference between scalars and vectors,
with reference to the discussion below, This difficulty will te dealt with on

pages to in the appendix, to avoid disruption of the following argument at

'this voint, HH AR
These formulae can be tested for validity and correct signage, using the

abovelisted data as follows: from the above data and when f<is

1) Ed,, from equilibrium to perihelion = f?- 02: f2

L
v

2). Ed from equilibrium to aphelion = -fg-Ozm —f2. ( It must be remembered

that Vjis in the opposite direction when the mass is travelliag +oward aphelion
from when it is travelling toward perikelion, )

3 id; from equilibrium to perihelion = (1—f2}-1 = ,f2.

4). B4, from equilibrium to avhelion = 1=(1=(1-£%)= £2

®

from fFhe abovederived formulae, when f< 1:

| - . . ; 7z 2 NN
17, gd“to perihelion at x=(f-1) = f?(f~x)/ = f .<f~if-1)}2 f2



2),
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>
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“

Ed, to aphelion where x:(f+f)=f2(f-(f+1)2= fe\=1,"= =f%, (See note above),
) : ‘ . 2 .2
3)e B lﬁo prerihelion where xq?-ﬂ = -fz.\f-(f—x))gz-f‘.i = -fz,

.

4). Bd,;to aphelion where x%?+ﬂ =-f2.(f—(f+x>)2 =-f2(f-(f+1))2= —fg.(-192= £2

THUS, IF WE :GREE, 1S DEML .STRATED IN TUR APERNDIX, TLAT FOR VECTCRS —12 should =w

THE +4BOVE FOR:ULAE AGREE WlITn TUE oA YRESENTED,
FH RN H

Having the above formulae in our posession, it is now possible, by using the
above data further, to derive formulae for the actual velocities and the
residual energies, both parallel and verpendicular, for all valid displacements
from equilibrium along both of the relevant radii of rotation, &s follows:
firstly, in dealing with the radius of rotation from the common focus:

Edﬂ at (f-x) is f2. f-x)2 while E, at equilibrium is f2 so the residual energy

.parallel at displacement along the x-axis of (f-x) must be f'z-fz(f-x)2 which

equals f2.(1-(f-X)2). The corresponding residual Velocityb= f.(1-(f-x)2)§-
Sinilarly, the residual energy perpendicular at displacement (f-x) must be
(1_f% _(_fz(f_X)2) = (1-f2)+f2,(f-x)2 = 1—f2.(1—(f-x)2) which egquals 1=5) at

displacement (f-x) along the x~axis from equilibrium,as required by the law of

-

conservation of energy, The corregponding residual YL = {1-f2€ﬁ-(f-x)2)_.
W3t

It w&ll be seen that while the variables a,s Vv

0t Ed,, and E“ are always of opposite

signs to a,, Vi, Edi~and &, , they mutually change signs as x passes through f so
that while the variables parallel for the red mass are positive on the common
focus side of equilibrium and negativé onthe alternate focusg side, the reverse
signage applies to the variaples associated with the 8reen mass. Also, it was
noted above that the above formulae were derived for the variables with reference
to displacement along the radius to the common focus, These formulae can
easily be modified for application to displacements along the radius to the
alternate focus by noting that the lengths of the radii to the alternate focii
are effectively 14f, (x=F ) o Thus, the displ-cements along the the radii to the
alternate focus are tf.(x-f} S0 the signs of the parameters associated with
displacements alcong the radii to the alternate focus are always opposite to

: . . A C s C s e N
those of the equivalent variables associated with variation in the radius to

the common focus,

IR HNF

-

¥1g,11"9 illustrates the values of the abovelisted variables at various positions
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in the cycle, {egquilibrium, perihelion, aphelion and for intermedigte distances
for both masses, rela.ive to their regpective radii of rotation, when they are
in con=-focal harmecnic oscillation, according to the above formulae,

It will be seen that for any given mess, at any point in the cycle, ~id =+2d =

ffz,Kf—x)z. Also Edﬁ along the radius to the CF, = -Ed”along the radius %o

the zlternate focus. ..lso qu_along the radius to the CF ==-3 yalong the ragiug
to trne alternate focus. rhese obsexrvetions apply to both masses where the

slgns are mutually changed,

e ol o
[

Jrom t..e above discussgion it will Dbe realised that for two unit messes in

E

iso~energetic {(harmonic) oscillation, awvout their common CG, and at an equilibriy
distance of unity, with an oscillation fackor f which is less than 13 nust
describe con-focal elliptic orbits of eccentricity £ and of unit equiiibrium
radius about a common focus which is at the common CG, of the masses, and

with frequency equal to that of the underlying con=-focal iso~-energetic oscillatio
rages to in the a pendix show that for masses m, and m, in iso-energetic
oscillation, the equilibrium radii of the Tesulting con=focal ellipses will

be in the ratio of 1/111’j to 1/m2.

These findings inform us why the orbits of planet-satellite ‘systems seen in tne
solar system and elsewhere, are con~-focal ellipses of eccentricity equal +to

the oscillation factor of their_ underlying con-focal iso=energetic oscillation,
of radii ihversely proportional to the magnitudes of the masses involved and

of equal frequency to that of their underlying oscillation,

I claim that the zbove findings rationalige . Kepler's first law: "lhe paths of
the planets are ellipses with the sun at one focus™, His second and third laws
will be deglt with later in the investigation, after the necessary relevant

information has been nregente




Y
- ( i above (024 etc,; that the law of moti f mas £ o it
1t was demonstrated above (p24 etc,) vt Tl taw of motion of masses al opposite
ends of s rotating diameter in harmonic motion abeut an eguilibrium distance
which is not av the origin, and of oscillation factor f is given in rectangular
. Foama : _
coordinates as: r= —(1+f.,\(f=-x,, This holds for all values of f,
it was also shown on pages. ¥ to?sabove, that the energies of displacement
from tne evuiliobrium position, ﬁdfiand Edl_are 2lways of opnosite sign and of
ol ve for all displacements from 1, of (f-z) along the x-axi.
absolute values: [{(£5.(f~-x) k ; g xi
wote also that displacements of (f-x; from 1 along the x-axis correspond to
displacements of (1=f,{f-x) along the rotating diameter.
. . o R X . . + 2 - 2 .
Thus mdtlo; the rec mass along the rotating diameter, —\f ,{f-x,° is always
equal in value and opposite in sign to Bd, ofr the red mass along thg rotating
- ( 2
. ""\f:n-ﬁf"x& . = . - .
diameter, IThus I 0t qualways equals zero and conservation of energy is
maintained for all real displacements in this case,as long as the oscillation
is wmaintained as shown in fig. 187,
o - . . . Y —- 2 L 2,
Similarly, &d,of the green mass along the rotating alameter,-v(f A f=x," is
always equa. in value and opposite in sign to Edl_of the green mass along the
' Fr a2 V2 3 .
rotating diameter from 1, I(f .(f-x) so the sum of these two energies of
displacement is also zero.
Similarly also, Ed”of the red mass along the rotating diameter from 1 is
i(f2.(f-x)2 while Ed,of the greem mass along the rotating diameter from 1 is

I(fz.(fusz so the sum of thesé energies of displacement is also zero.

- o 2
Similarly Edlof the red mass along the rotating diameter from 1 is +\f2.ﬁf-xja

while Eii_of the green mass along the rotating diameter from 1 isg i{f2.(F—x}d

so these energies of displacement also camcel out Ziving conservation of energy
here too,

Tvus all of these energies of displacement sum to zero for all noints in the
oscillation, &iving, as required,total conservation of energy around the cycle.
. : - s Coa . P =1

~ote from above, that this can only occur if the displacements from r=- axe

always +f.if=%,,



The result of this discussion so far can be summarised as fnllows: S

Two unit masses in iso-energetic (harmonic) oscillation about their cg. and
with an equilibrium distance of unity, must describe con-focal elliptic
orbits of eccentricity f and of unit equilibrium radius about a common
focus which is at the cg. of the masses, and with frequency equal to that of
the underlying con-focal iso-energetic oscillation.
K KK KA KK
These findings inform us why the orbits of the planet-satellite systems
seen in the solar system and elsewhere, are con-focal ellipses of eccentrici-
equal to the oscillation factor of the underlying con-focal iso-energetic
oscillation. I claim that the above findings rationalise ¥epler's first
law: "The paths of the planets are ellipses with the sun at one focus.
KKK KN NN

In view of these findings, I think that Fig.1F8 represents (in general terms
the alignments and distance relationships, required between all of the
primaries and their secoadraries in the solar system, to generate iso-
energetic oscillation in those combinations. Observation shows that this
arrangement prevails throughout the solar system, so it could be a general
rule for isvu-energetic oscillation in a frictionless medium such as that
surrounding the solar system. If this is so, the question arise=s as to
whether this is a general rule of nature, applyiﬁg also to mass systems
within the atoms and the galaxies, if they are operating in a frictionless
medium as eney appear to be doing.
Fig.1F.10A rerresents a preliminary attenpt to investigate this possibility.
This is intended to represent an iso-energetic combination of two hydrogen
atoms orbiting about their common electrons, situated at the common focus.
For iso-energetic oscillation the, the protons of the atoms must bhe at
at the alternatel focii and aligned as shown. Note that a single hydrogen
atom, as shown in Fig.1F.11A (or B) cannot be stable, since neither can,
by itself, generate iso-energetic oscillation. If however, they are Jjoined
throuzh their common electrons as shown in Fig.1F.10.A, they can generate
iso-energetic oscillation and the mollecule so formed is stable. (H2 is
found, while H1is not found). Note that two hydrogzn atoms in iso-enervetic
oscillation about their respective FRCOTON3, as shown in fig.1F.10.B, (that
is He),is mush more stable under chemical attack than is H2 so the proton
to proton bond must be much stronger than the electron to electron bond.

(See page 35). I am convinced that the bonding arrangements shown in
figs . 1F.10A and 1F.108 represent truely, those for H2 and He respectively
I have hazarded a speculation on the general honding arrangements and
the consequent structures of the elements of period 2 with less confidence
than those above. Consequently, they are presented in the appendix.









AN "ENERGY" AI'PROACH TO KEFLER'S THIRD TAW. &?é
Kepler's third law has been shown to be valid for all of the planets and
tneir satellites throughout the solar system with no exceptions, so I accept
it as a universal law representing the equilibrium condition for those bod;es.
This law can be written as: Wz,r = Kc/r. That is, the rotational Ke of any
satellite at equilibriun with it's primary is inversely proportional to
it's distance from the CG. with it's primary.

® 0 0 00 00 0 0 0

2 pe . i'r\’.c.r'—1 then d/dr(WZ'rz)‘must equal d/dercvr—1).

If W=,

Thus 2.W2.r must equal —Ke.r2,
If we look at this situation dimensionally, M.Wz.rz represents a rotational
Ke with dimensions M.LZ.T_Z, while M.Wg.r is recognisable as a centrifugal
force with dimensions M.L.T—Z. Hoyw can this be,when Xc is a constant with
no dimensions ?. Well Xc at this stage may only appear to be a constant.
It may actually be a more complicated parameter involving dimensions, which
would have to be LB.'I"'2 to make the above equation valid. This dimension
represents distance times energy per unit mass and could represent the
integral of energy over distance. That is.‘diStance 2

This possibility will be examined later. Jarstaddgtance. T AT

For equilibrium the centrifugal force W2.r and the centripetal force —Kc.r_2
must be equal and of opposite sign at the equilibrium distance, as seen above.
This centripetal force obeys a law involving r'zwhich makes it an inverse
square law akin to Newton's law of gravitation which has hitherto been used

to explain Kepler's 3rd law, so it may be useful to examine it more closely.
.éll‘...". ‘V“' 2
On integrating the force -Kc/r“ with respect to r , we get: (-ic/r".dr =

But Kc/r, 2 it iy

= Ke/r - Ke/ry infinity™ © = " infinity'T infinity'

infinity*

Therefore Wz.r2 must equal Kc/r-Kc/r. Thus the rotational Ke at r

infinity"®
must equal the work done in moveing Kc/r from infinity to r.

sut We.rl

is undoubtedly Ei_so the centripetal force -K.c/r2 which is
accelerating W2.r2. must be acting perpendicular and not parallel, as it
has hitherto been presumed to act. THE CONCLU3ZION SEEMS INESCAPABTLE THAT
W2.r ( the force opposing the rotational acceleration), and Kc/r2 (the force
causing the rotational a:celerafion), MUST BE ACTING FEREFFNDICULAR AWD NOT

PARALLEL.

3ince we are dealing with an equilibrium energy equation in the 3rd Law,
there is nothing in it to establish the time and duration of the action of
Kc/rz. If it had acted over various distances on the various planets in

the past and in so doing had established the various rotational Kes which

we see now, and had now ceased, we could not tell from the law if this was so
FQR‘ALL WE KNOW THE 3RD LAW COULD BE THE FOOTFRINT OF A LONG DEAD FORCE,



It is interesting to speculate that if only a small fraction (F) of this %
force, (say F.Kc/rz), began acting a ain today and acted over just one cycle
of the oscillation, the wor . done by this force would be F.Kc/r. Now, the
only place from which this energy could come is the potential energy of
displacement from infinity, that is F.Kc/r. Thus the residual energy of
displacement must be: (1-F3.Kc/r. Remember, F is a very small fraction, muche
Thus insufficient energy of displacement from infinity would be left avaliable
to return the oscillation to it's original equilibrium position before the
force operated. Thus a new equilibrium radius of rotation would be establishe

= (1-F).(Ke/r)times r (1=F)71 (equibis

80 that: T2(equilibrium) 1(equilibrium)”
If this force acted over n cycles, the equilibrium r would be reduced
accordingly on every cycle and even if the factor (F) was very small on any
given cycle, the accumulated reduction in the equilibrium radius of rotation
could be very great if sufficient cycles (perhaps something even approaching
infinity) were involved over time.

Of course, this is only speculatiom, but I think that this senario possibly
accounts for the general configuration of the solar and other systems that

we see today. The next section will be devoted to trying to refine this
speculation. Since space is not a perfect vacuum;- we see various objects
and other particulate matter out there, this process might not have yet
totally ceased and it might be going on to an unmeasurable extent even today.
Summing up the above speculation so far;- Note that the above force equality
formula: W2.r = —Kc/r2 was derived by differentiating the above energy
equality formula: Wz.rr= Ke/r, with respect to r, over thé;range from «c to r.
At first sight, this result seems to imply that a force of -Kc/r2 is required
to induce an energy of displacement:of Xc/r OVER ONE CYCLE OF OFERATION.
However, since energy in general is cumulative over more than one cycle, it
is equally valid to conclude that a force of (1/n*).Kc/r2 maintained over

n cycles would result in the same cumulative energy change of ¥c/r.

What could this hypothetical force have been ?.

Well, since all of the galactic systems are assumed to have condensed from

a "dust" cloud, the friction from the cloud itself could have been the:.culprit

After the dust cloud was absorbed, the force ceased.



AEFLER'S (IMELICIT) 4Lth LAW, THIS AW GOVERNS THE DISEQUILIBRIUM SITUATION.

IT IS IMFLIED IN THE 3rd LAW. 3"
AS note above, Kepler's 3rd law is actually an energy equilibrium equation,
defining the individual equilibrium radius of rotation for each of the planets
and their satellites, as defined by their individual rotational kinetic
energies which are in turn determined by their energies of displacement from
infinity, at equilibrium. That is;- the individual equilibrium radius of
rotation (r), of each of the planets and their satellites, is deterrined by
the energy of displacement (Kc/r), of each body, at the time.
The law explicitly defines the equilibrium condition, however, as seen below,
it provides useful information about the disequilibrium situation also.
From page , W2.r is a force which changes E (WZ.rZ) so it must act
perpendicular. This, in spite of the fact that it is called "centrifugal
force", implying that it acts parallel. On the other hand, the counterveiling
"centripetal force" must act parallel sincé it is changeing the energy of
displacement from equilibrium (Xc/r) which is a change parallel (in r).
How can this be ?. a force parallel cannnt accelerate a moss perpendicular.
Or can it ?. If the 3*rd law is accepted, and it has been around for 400 years,
it has to be accepted that a centripetal force, Kc/r2 acting parallel, MUST
in some way, change E ,W2.r2 (which is perpendicular), to produce equilibrium
at some value of r, whether XKc/r acts parallel or not.
This finding has significance when applied to non-equilibrium situations.
In the following discussion, W2 will be taken to equal Xc. See section on unit
When r>»1, then force Wz.r is greater than force Kc/rz, so facceleration is Folens
~When r=1, then force W2.r = force Kc/r2 so there in’no acceleration either we
When r<1, then force W2.r <« force K_c/r‘2 so acceleration is toward r=1.
Wwhen r>1, then d/dr(E,) is positive while d/dr(E, ) is negative.
When r=1, then d/dr(E”) =d/dr(E ) = 0, so there is an acceleration reversal.
Wwhen rel1, then d/dr(E”) is negative while d/dr(EL) is positive.

¥ KoK ¥ KKK KKK

The above figures show unequivocally, that as r passes through 1,
acceleration reversals take place in both a, anhd a,, so that force parallel
Kc/rz, is always directed toward the equilibrium distance r, while the

force perpendicular, Wz.r, ascillates about an equilibrium value at r=1.
¥ H K KK R KK v

The atove findings explain the way in which iso-energetic oscillation is
established as r passes through the equilibrium position (r=1) after
disequilibrium contraction from infinity. This complements the work on

pages 27 through 31 above. ¥¥X¥¥¥XX¥¥  yo ngw look at the disequilibrium case.

At equilibrium, E,= Wo.r°= Kc/r and we saw above that eqyilibrium always

occurs at r=1. This implies that the forces causing acceleration, that is
2
W

Away from equilibrium, the net acceleration toward (r=1) is the difference

I and j\(c/r2 must be equal and opposite at that point. Thus, W2=Kc at r=1.

netween these forces, that is: Wz.r -_‘,A’.c/r2 and we saw on page that this



net force changes sign as r passes through r=1. It was seen on p. 35 (?b
that (W .r) is greater than (uc/r ) when r>1 and is less than ’Kc/r?)

when r<l, assuring an acceleration reversal as r passes through 1.

Thus, in the disequilibrium situation, which prevails at values of rx1,

the acceleration toward equilibrium at r=1, is the difference between

these forces. That is: a”toward r=1 is (W%r)-(%c/r2)=d/dr(wz.r2)—d/dr(ﬁc/r).
No matter what the value of r, this acceleration is always directed toward

r=1. 1 designate this law; "Xepler's 4th law". The law of disequilibrium.
KKK KKK KN KK

Since E,+ E,= 1, then E =1-E,. Thus E;= 1- N?r2 = Vc/r. >o the acceleratio

perpendlcular a is d/dr(1 W= .rp) d/dr(fc/r ) = (Vc/r Y- (W .r'). Thus a, is
always equal and of opposite sign to a and so it undergoes an equal and

opposite sign reversal at (r=1) to that of a,. As pointed out above,
these findings completely explain the mechanism which establishes con-focal

harmonic oscillation about r=1, as r pasdges through 1.
HHHHKRH KKK
Sincevwz. p E‘- Kc/r, then .1}5 inversely proportional to the displacement
of the orbltlng masses at r\zcg from their original orbiting distance of
r=infinity. It must be remembered that the masses came to equilibrium at r
because an amount of energy equal to Xc¢/r was dissipated against, (in the
case of the solar system), the "dust cloud", during contraction. They
only came to equilibrium atibecause the resistance ceased at that point.
If this is true, an equal amount of energy must be applied to the two
bodies from outside the system and in the opposite directions, to take them
back to their original equilibrium positions at r= infinity.
Thus E, = Kc/r can be regarded as the "energy of association” per unit
mass, of two unit masses orbiting in equilibrium at ri oo which must be
applied to the two masses, from outside the system to take them back to
their original equilibrium at r=infinity. If the two masses were M1 and M?
instead of unity, the equivalent "energy of association" would be Xc. W /r,
while the forces :applied at r from outside the system, required to force
this change, would be: KC.M1.M2/r2. The law of gravitation crops up everywher
Kok HHH K KKK
The above relationship affords a gquick way of comparing the bond emergies
or the "energies of accociaticn", of chemical (electron to electron) and
nuclear (proton to proton) bords, and of gther known structural systems.
For instance, M (proton) is atout 1800 times M (electron), so r for the
electron at equilibrium must te about 1800 times r for the proton in equi}%g{
Thus, the relative "energy of accociation" of the proton to proton bond
to the relative "energy of association' of the electron to electron bond
must be (1800 X 1800/1)/(1X 1/1800) = 18003 = 5.83 X 109.
S0 the nuclear bond is 5.83 X 109 times as strong as the chemical bond.
This explains why nuclear boncs are so much harder to break (fortunately)

than chemical bonds and why enormous amcunts of- energy using acceleraters

etc. are required—to break them. - ET L - -



AN HYFOTHETICAL S{FLANATTON CONCERNING THE ORIGIN OF, AND THE DEVELOPMENT‘4~37
THEREFROM, OF THE VARIOUS FRIMARY-SATELLITE SYSTEMS NOW SEEN IN THE SOLAR SYSTE
It is genemlly Reld that the galaxies and all of their satellite svstems
originally condensed from a "dust cloud", so I take this to be my starting
point, and I include the following assumptions about conditions at the time.
1). Since the nearest star from us is about 4 light years away, I will
assume that the disc of cloud from which the solar system condensed, was
about 8 light years across. By our standards, this distance is unimaginally
great and can be regarded as being close to infinity, so I will regard the
outer part of the disc to be an infinite distance from it's cg. at the center
2 rls Ke/r, then W .2 = E, would be O at the edge of the disc
and would be 1 at r=1. {3ee page: ). This implies that the dust cloud

2). 3ince W

would be rotating differentially with respect to it's radius of rotation.
This inference is strengthen by the observation of spiral galaxies. Also,

Since, according to the law of conservatién of energy, Elf E,, must equal 1,

then E, at the edge of the disc must be 1-EJ = 1, and must be 1- = 0 at r=
3). As shown on page. , friction within the cloud would cause 1t's general
contraction toward it's cg. together with the formation of a ring of mass
aroung the cg. at r=1., Further friction within the ring could be expected
to finally result in the consolidation of the ring of mass into a single
mass at some point on the ring, exactly as we see the planets orbiting the
sun at the present time.
4). Into this friction induced, contracting and differentially rotating
discof the "dust cloud"j another mass, possibly something-like a large
meteor or a comet, enters from outside the system, and in the same plane of
rotation as the system, with velocity V”(taken to be 1) relative to that of
the developing mass within the system.
5). Note that this velocity can have two general characteristics, as follow:
A). The two masses can be on a collision course through their cg., in which
case their angle of approach would be 6°= 0 and cos & = 1, as shown in fig.A
B). The two masses could be on a passing course. In this case, their passiny
angle would be e° where 0919Q<90o and O<cos 6<1, as seen in fig. B below.
Fig. A. This diagram illustrates the case where an outside body enters

the edge of the part of the "dust cloud" relevant to
Groit of I soler systen, i the plane of rofation of that

developlng mass develo & Ul
ping Mmass within the system. Edke of
within the dust QIBR\. In this case the masses are on  gdust dloud.

a collision course with passing
angle 8 equal to zero. \/3{0
cg. of dust cloud, Infinite distance. * i
~ = *-“*/\/\/\/\,/“ I e - < ’ L
r= 1. V= /=] External
’Developing mass orbiting cg. mass
of dust cloud at r=1 with edizfgglng
v=l V=1 and V=0, e

THE EXTERNAL MASS ™ILL GO INTO CIRCULAR cloud
=" ORBIT AROCUND THE cg. 7 with %l= 1.
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In figure A above, the Wland hence the E,; of the entering mass M2 is 1 at r=,
directed toward the cg. along the radius of rotation of MZ. Thus, MZ will
procede toward the cz. lecause of the resistance of the dust cloud, it's
equilibrium distance will be reduced according to: E;= 1-"c/r (See papge )
Also because of the resistance and mass in the cloud, M2 can be expected

to accunulate mass from the cloud, Jjust as M1 near the center of the cloud
has been shown to be doing. Thus, the two masses will accurulate mass

from the cloud, and in the process, thin the cloud down. As M, increases

2
in nass, it will start influencing tne rart of the cloud close to it's

taen radius of revolution, as it coes arourd. See fig. AA below.

Fig. A A. This figure demonstrates how secondra rotation is generated

within the part of the dust cloud close to the orbit of M2 by §%

that orbiting body.- This secondrarily rq;ating masg will
- orbit of ~ 174 »
accumulating eventually condense to form satdllites of M2 - ciloud

~mass witnin cloud. as described below,

— \Edge

yof

. Secondrary -

Fresent radius of rotation of M_ _ /7~ ¥ rotation
le—  —  — VT T T 2 7 | generated by M.

i

i}
¥ ;

: ]
/

<&
cg. Note,.that both.magses |\, — e e -
of a?& blfggfg ?g figﬁi \\/v}lé {;{This is th)
\ dust cloud. | Be S ~_l—"distance that
\ v Accumulating M_has moved J
N mass near cg. tofrard the cg. L
’ at r = 1. since entering the

. : . cloud aeons ago.
Dust cloud being absorbed by masses

This contraction
.n r was induced by

M1,M2,M', etc.

This cloud will eventually bpe totally the energy dissipated against
absorbed, leaving M L ete. orbiting the resistance of the dust
abouttheir respectife ég.s with M, . cloud according to E,= 1-kc/r.

Given enough time, smaller masses from outside the system, wriicu me. po.. .o
be travelling in the plane of induced secondrary rotation,with V,, directed

along the radius of rotation around their cg.s with M, ,will by chance

2
enter the dust cloud at infinity. Because of the resistance of the cloud,
these masses will start to contract on theigscg.s with Mzsggus forming

the embryos of planet-satellite systems such.that which wejaround Jupiter.
% KKK KKK KRN

v

At some much later time, by which time, Mz's equilibrium distance has been
reduced by friction with the cloud, to a long way from r= infinity and
perhaps to some position such as that shown in fig.A A, a second strav mass
(M3>’ by chance enters the dust cloud from outside and travelling in it's
plane of rotation with Vi directed toward the CG. of MB and theﬂﬁ%oud.

As in the case of Mz, friction in the cloud induces contraction,,absorption
of mass and the generation of secondrary rotation at the radius of the

cloud from ikt'scg. with MB’ close to the then radius of rotation of ¥

-

Jg ’
».



thus, setting up another embryo satellite system around MB' /33f
During the life of the dust cloud, several more stray mass from outside
the cloud, M4’M5’ M6’ etc. may at various times enter the cloud in the
plane of it's rotation with Vhdirected toward that mass's cg. with the
dust cloud, thus as described above, forming a further series of primary-
satellite systems orbiting the cg. of the cloud. These new masses will
also absorb mass from the cloud until at some time all of the mass will
effectively be absorbed from the cloud, leaving a series of primary-
satellite systems circularly orbiting the cg. Because it has ceased to
exist, the cloud will now have no mass nor a cg. with the masses left.
S0 these masses, MZ’MB’ TL, M5 etc will circularly orbit their cg. with

the new primary mass M in stable equilibrium at various distance from

H
that cg., determlned by1the different +times in which they first entered
the cloud and it's varying resistance durlng their times in it hefore it
was absorbed. N TAIHARANKN
1t is not difficult to imagine that the abovedescribed development might
result in something resembling the solar system as we see it today, where
M1 represents the sun, while the other masses ﬂ2, 3, 4, M_, etc. become
the plamets,  most of which have satellite systems around them' except
for one obvious discrepancy. This is: the above discription would, as
mentioned above, result in the formation of circular orbits for all of the
masses, while in the solar system we see only elliptic orbits with O<e<1.

To correct this problem we must look at fig. B below:

Fig. B. This diagram illustrates the case where a body from outside,(MZ» enters
the outside edge of the dustcloud relative to the solar system, in the plane
of rotation of that system, with total V= =1, not as in case A, where 6—90 but
at an angle & in the plane of rotation, to the line from M2 to the cg,. w@en.r;
In this case, M2 and M1 are not on a collision course when on
the edge of the cloud, but are initially on a passing course,

where the angle e ls O<<9<9O In this case: Edé;»"
dusﬁﬁclOud

infinity.

At r= 1nf1n1ty V,= cos” @ E”— Coség =1. A
V,=sin /gln 6 = 0. D :
, 1 L7 . 2 , 1rectlon of entry of M
At r=1 gn: écoszg 1?1/2 Ey= COS50-1 = \\\Felatlve to the rotating
, = (sin®e+ E;= sin®0+1 = rad1us,»at r-lnflnltv
Orbit of developing mass) fngle of entry rel, !
to rotating radius
cg. of dust uloFd at r=infinity. ;
W hen r >1 M- ‘ .'umm%t ance,

_ Developing mass orbiting c
When r=1, then a,& a,both 0. ’ P\lof dust cloud at r = 1-g g
When r<1, " a“is + ‘7 V =1and V = 0, ’
" ais - TV = Since THE ECCENTRICITIZS of the FINAL
So there is an aéceleratkon reversal ORSITS = 003 6, THIS DEMONSTRATES THAT
for both parateters.as’ T passes through 1. TH EREFURS“RS OF THE FLANETS
ORIGIVALLY ENTERED ALCORPTNG TO FIGR.
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In the above case, friction in the dust cloud will cause contraction in é%Q
the system, just as it did in the case of fig.A. However, at infinity

in this case, Vhwill be cos © and not 1 as in case A, while E,will be sin o,
and not zero. Thus, in this case, Eﬂ= 00526 and EL= sin29 at znfinity.

3y the time that all of the massin the cloud has been absorbed by the
developing masses and by which time the friction in the cloud has been
eliminated, the total previous friction will have caused contraction to

r=unity (equilibrium), where E, = cos26-1 =—sin29 and E, = sin26 +1 and

I
where an acceleration reversal is induced in both anplitude and eccentricity
See pages 29, 30, 31, 34, 36, and 37.
Thus at r=unity, there is a regime change between the mechanics of the
two phases, first from:
1). a disequilibrium contraction/expansion where energy is lost or gained
to or from outside masses; (for example, the dust cloud)where 4th: law rules,
(2). an iso-energetic oscillation about r unity, which distance is
determined by the 3rd law, in which energy is passed between the two
oscillating masses at all points in the cycle in equal ameunts with o

energy gained or lost, from or to, outside masses during this time.
W KKK XK >
It was shown above that at r=unity in case B, E -sin"® so that V

-sin G*and that the induced oscillation’is 1so-energ@t1c, 1mply1ng

that it is also con-focal elliptic. It has been shown throughout the work,
that: (1) both the displacement from equilibrium to perihelion and to
aphelion is fe, where e is theieccentricity of the osciltation.

(2) at both perihelion and at aphelion E,is O.

Since, accordinyto the formula E12-E22 = 2.a.s , then —51n29 -0 = 2.,a.e/2.

or ¥ sin®0= Ya.e.
This can only be valid iff I both a and e equal ¥sin ©. _
Thus the eccentricity of the oscillation must be determined by the sign

of the original passing angle of the masses back at r=infinity.
After all of the resistance from the dust cloud has ceased, the picture
emerges of a resultant system closely resembling the present solar system

in all of the major respects. These are:
1). The presence of a very large mass near the center of the system, (the sw

containing most of the mass in the original dust cloud.

" 2). This mass is individually'orbiting with each of the captured masses, MZ’

MB, My, «... etc. (the planets), about their individual cgg .

3). Each of the equilibrium distances, r2, rB, etc. is determined by their
residual E, =W 2 {c/r, after resistance from the dust cloud has ceased,

4). The eccentr1c1tlgs of each of the orbits are elliptical and not circular

indicating that capture occured according to fig.B and not fig. A.

" am having trouble with Argand again. Forget him, he knew nothing about

vectors.



5}« 31X of the planets in the solar system have satellites in secondrary #/
rotation about them. 'ow this phenomenon night have developed was

demonstrated according to fig. AA ahove and in the accompanying legend,
W KR KK ’ ’ -

It was shown in tne hypothetical explanation of the origin of, and the
development therefrom, of the different primnary-secondrary systems seen in th
solar system, how the above five observed features could have developed
according to this hypothesis, thus indicating that the hypothesis might
represent a likely explanation of how the solar svstem actually developed,

W He KWW AR
Tnere remains one matter to be cleared up before leaving this guestion.

An obvious guestion regarding the ahove discussion is this: It nas been

shown throughout the above work, that for all isO-energetic oscillations,

the equilibrium distance is always 1(sometimes written as unity), yvet accordir
to the %*rd law (and as measured), the equiiibrium distances of the planets
are all different and therefore cannot all be equal to 1. dow can this be 7,
A good question which I will try to answer as follows: For con-focal ellipses
of eccentricity e, then r—-(1 e +ex) and the equlllbrlum distance occurs at x=
In this case requillhrlum 7-e'+e e = 1. This is a pure mathematical 5 J
conclusion, valid only for the mathematical premise or formula: r= -(1 e“+ex’
iote that if this formula is modified in some way, such as, say by multiplving
it by 4, to r=*4.(1-e+ex) then all values of r, including T oqui11mriun
Now, this is the sort of thing that we are doing when we apply the physical
and astronomical related 3rd law to the pure mathematical,“con-focal elliptic
situation outlined above to produce Physical distances relating to specific

2 " 2
flanets in the solar ststem. Then, we are saying: r;f(1—e +e.e). T /we 1/3.

are X

vote that the first factor, (1- ez+e.e) is always = 1, and that while the
second factor (ic ”“)1/315 always the same for a given planet, it is different
for each of the planets, hecause the variable W changes from planet to planet.,
rhus, the equilibrium distances of the rlanets, under ‘erler's 3rd law are all
different and so trey cannot all be equal to 1. /hen vou multiply 2 factors
together, one of which is 1, the value of the product is that of the other far
Ifhis explains why the equilibrium distances in the solar system are all

different even thoug: the equilibrium distances in rart of the expression are
KSR H N R .

The above explanation seems to me to afford a way of; by adjusting the unit
values of the components of one of the parameters in a multi-paraneter
expression to 1 when the exrression equals 1, we can simplify calculation of
that expression. An example of this idea is given on the next page. Fage 42,

1 think that a much more satisfactory calculation system could be established
for use in the solar system by arranging: "unit" 4c = "unit" mass of the sun =
"unit" radius of equilibrium rotation of the earth about the =un = 1.

Then, since N2.r5= C, then W2 L1 =1 so "unit" W would have to be 1.
bquivalent values for all of the anove paraneters could then he ex ressed

in termas of che above units, thus simplifving calculation as shown on p. 42,

ie need a "metric" system for astronomy.



XEPLER'S SECEND LAW I35 INVALID.

4l

Kepler's second law, restated in modern terms is: "The planets sweep
out equal areas in equal intervals of time".

Therefore, they must sweep out equal areas in unit time.

But the area swept out in unit time is r.W. But r.W is angular velocity v, .
Thus, a conclusion of the second law is that angular velocity is

—_—

constant around the orbit.

Now, if we look at fig. B on p. 39 and the accompanying legend on p. 40,
we see that for a mass entering the dust cloud at r= infinity with a
velocity V = 1, in the plane of rotation of the cloud, and at an angle ©
with the line from the point of entry, through the cg. of the cloud,
then V; = sin 6 = e and W,: cos ©. g
Furthermore, we see that, at the equilibrium distance where r=1, then
YL: sin @ + 1 and V, = cos 6 - 1.
Obviously, s%nce a”is reversed at both perihelion and at aphelion, where
r = e=-1 and e+1 respectively, then‘wlmust be O and YLmust be 1 at those
points.
Thus Ylmust vary from sin €& +1 = e+1 at equilibrium (r=1), through
(e+1)-1 = e = sin ©, to both perihelion (r=e-1) and aphelion (r=e+1).
Thus the angular velocity (r.W), that is V‘, cannot bhe constant around
the orbit, but must vary through a range of sin © = e.
Thus, the second law must be invalid.

K K KKK KK
Kepler can hardly be blamed for his invalid conclusion, for the
following reasons:
Tico® had only three planets, Venus, Mars and Jupiter, on which to make
measurements at the time and he is said to have made most of them on
the most accible planet, Venus, which unfortunately has the lowest
eccentricity of all of the planets, (.007), which is nearly circular. .
While Tico's equipment and techniques were a great improvement on what
went before, the GPE of his measurements is still said to have been
about six minutes of arc.
If Venus' orbit had been circular (e=0) and not of eccentricity only .007,

then the variation in r.W would have been zero and the 3rd law would
have been correct.

Thus, the GFE of Tico's measurements masked the small range in
eccentricity which he had to distinguish,to properly state the law.
He was a victim of the limited technology of his time.

What is amazing are his titanic achievements with such limited

information. KXKXXXXXX% Tt was shown in fig. 1F8 that for
con-focal iso-energetic (elliptic) oscillation,r must be 1-e.(e-x), so

the equation of the above defined oscillation must be: r = 1-e2+ex.
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Herler's 3rd law tells us that W2.r2= Ke/r = ELper unit mass at the equilibriy:
distance, for all of the planets and their satellites in the solar system,
Thus, E, at equilibrium for any planet, say P1 = Zc{sun)/r/planet1), E, for plane
= Ke(sun)/r(planet2), etc.

Thus, if we designate Kc(sunj nominally = 1 and r(planetl) = 1 then %Lplanet1 =
Note, that by establishing unit values for Kc of the sun (the primary) and of -
for r for planet 1 we have automatically established a unit value for E, for

planet1 under Kepler's 3rd law.

Consider now, another planet2 who's mass is M2 Compared to planeti's mass
and who's equilibrium distance is r, compa;ed to planeti's r = 1.

Then E planet2 would = Kc(sen)/r(planet2) =1/r'2 in units of @L(planet1), whick
Similarly £,planet3 = Kc(sun)/r(planet3), 31(planet&):Kc(sun)/r(planeth), etc.
Thus, by establishing interelated unit values, for the parameters determining
E, for any one of the planets (in this case pPlanet1), we have established a
units system for comparing EL for all of the planets in the solar system.

We have established in rages through that the K¢ of any primary in the
solar system is linearly proportional to it's mass, so £c(sun)/Kc(planet) =
M(sun)/M{planet) = 1/MPlanet. So when Xc(sun) = 1 then Kc(planet) = M(planet).
Then We can calculate the XKc for all of the pPlanets in the solar system
according to the formula: Kc(planet) = m(planet).Xc(sun)/M(sun) =m(planet).1/1
Having done this, we can then calculate %L,for all of the planets and all of
their satellites in the system according to the formula:

E, (satellitel) of planetq M(planet?)/r(planet?).r(satellitel).

Eﬁsatellitez) ofplanet1 M(planet?)/r(planetl).r(satellite2).
E, satellite3) of planet .M(planet1)/r(planet1).r(se+o'le~3). etc.
E, satellite1) of planet2 “M(planetZ)/r(planet2).r{sa%ellit@1) of planet2,

EL(satelliteZ) of planet2 = M(planet2)/r(planet2)/r(satellite?) of planet2., ®
‘ *HRHK 4K

Knowing r for all of the satellites and after calculating their individual EL
then, if those satellites had further satellites around-+them (which does not
occur in the solar system), we could nevertheless calculate E, for them.
This observation is not as way out as it might seem. At this“satge we
cannot rule out rotary systems of higher order th%%.g?isgu %%Egevice nay yet
prove useful. Note, that we have established a units svstem,rotary systems
of any derree, just by establishing related units for the mass of the highest
primary and it's Xc together with a unit equilibrium radius of rotation for
one of the highest .rder satellites, according to “epler's 3rd law,
Note also, that we can do away with the Kepler constant, which has no
fundamental significance in the mechanics of #“ass Systems. It is merelvy a
correction factor which introduces”i%§§££ﬂinto the calculations if we do not
;etthe correct relationships between theAparameters involved in the function

involved, (in this case Kepler's 3rd law.)



A NEW THEORY CONCERNING THE OBSERVED PHENOMENON KNOWN AS "GRAVITATION",
It was shewn in the intreduetion that the existing theory of gravitation éﬁé;
fails te satisfaét@rily explain many existingly observed gravitational Phenomensg,,
In view of this faet a more satisfactory theory relating teo these Phenemena ig
eleariy required and I believe that the contents of the work above and in the
appended material affords the basis for sueh a theory,
An ouﬁline of this theory is presented below., The assertions mgpde there being
Justified above, This outline will be woerded for applicatien to a two mgss
system but will be seen to be of universalvapplieation.

WKWK e W

AN OUTLINE OF THE NEW THEORY REGARDING GRAVITATIONAL PHENOMENA.

In my opinion the basie trouble invelving the old theory of gravitation lies
in the first law of m@tion.

Newten stated: * A body centinues in a state of rest or of uniform motion in
a straight line unless it is aeted upon by some external impressed f@ree‘t@

ehange that state",

He then went on to formulate the seeond law as: "The time rate of ehange in

momentum is prepertional te the impressed force and takes plae% in the direetion

in which that fereg aets“.

In view of this f@riulation of the seeond law, in my opiniom he could with

more power and symmetry have stated the first law in some form sueh ag:

"The momentum of a mass is conserved unless it is acted upon by some external

impressed foree to change that momentum",

He eould then have rounded the laws off as: "For any ehange in momentum there

is an equal and epposite ehange in momedtum";

This would not only have been a more consistent stgtement of the laws; if

would alse have been an elegant statement of the law of eonservation of

momentum, whiech he obviously understood but never overtly artieulated,
FHHHH KA R N %

There is no evidence to show that Newton ever formed the eoncept of rotational

momentum but we knew that his laws apply equally to both linear and rotational

momentum,

-
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I point out at this stage that there is no evidenee, experimental arhothérwiSQ

has ever been predueced indieating that mayses, when not under force, do move
in straight lines. The idea is intuitive but has never been experimentally
demenstrated, In faet, for the law of eonservation of rotational mementum
to hald it is necessary te eenclude that no force is required to change the
direstion of a mass's motion, as set out below,

The law of econservation of rotational mementunm implies that NO FORCE IS
REQUIRED 70 MAINTAIN ROTATIONAL MOMENTUM,

Sinee the direetien of metion is econstantly ehangeing during rotation, the

: 1
ineseapable conelusion is that NO FORCE IS REQUIRED TO CHANGE A MASS .8
DIRECTION OF MOTION, THEREFORE A BODY DORS NOT HAVE TO MAINTAIN A UNIFORM

MOPION IN A STRAIGHF LINE UNIESS IF IS ACPED UPON BY SOME EXPERNAL IMPRESSED

FCRCE.

Anybody wheo argues that force is required te change direetion of motiom will

have trouble explaining where the energy is coming from te maintain uniform

retational motien,

Furthermere, for the laws of conservation of "linear" and "rotational"

menentum to hold at the same time, "linear"mementum and henug;"linear"

veleelty must mean the same thing as "instantanecus tangehtial” momentum

and henee "instantaneous tangential" feleoity.

The conelusion must follew that any mass, rotating in a twe mass system,

when unaffeeted by external feree, does not fellow a straight line Eut that

it's direetion must remain at right angles te the instantaneous radius of

rotation about the other masgs, Tyerefore it must be eontinually changeing.,

Tkerefore, Newton's eriginal statement of his First. Law of Motion: "A body

eontinues in a state of rest or of uniform m@tien in e straight liné secscss

is net a valid statement of the laws of nature as ;e see thenm,

A more ascurate formulation would be: "The momentum of a mass is conserved

unless it is aeted on by some external impressed forece to ehange that momentum",
| HHH KRR NN

If this pestulation is accepted it will be realised that noe foree is required

to maintain uniferm rotational motion and consequently no foree, gravitational

or lotherwise is required to maintain the planets in their observed orbits



around the sunj- their uniform orbits are simply the result of the applieation

of the law of eonservation eof mementum/energy. Qég
I N ’

If M.V. is constant = C, then V = C/M so V2 = g2/u2,
Alse %.M.V2 = %.M.CZ/W2 = Cz/(z.M) = anether constant = K,
Of course this means that if mementum remains constant, then energy must alse
remain constant, and thus any law implying conservation of mementum must alse
imply eenservatien of energy.
As about fifty years elapsed between Thomas Young's eoneeption of energy and
Meyer's and Helmholtz' independent enunsiations of the law ef eonservation of
energy, it is surprising hew leng it teok for th%a faet teo sink in,

L2 2 TR T
From the aboeve, it is obvious that plahetry motion is simply the result of
the operation of the law of eonservation of momentum/energy., No gravitational
eteraotien being required to keep the planets in their orbits, Pwo masses in
equilibrium, orbiting eaeh other about their eemmon eenter of gravity will
simply meve 80 as to keep their anmgular momentum/energy relative to eaeh other
eonstant, Their equilibrium distanees from their common @gnﬁer of gravity
will depend, as seen from Kepler's third law, upen their ro;atienal kinetie
energy per unit mass, and be in the inverse ratio of their respeetive masses,
but will remain constant as long as their rotational momenta/KBs relative to
each other do not ehange., In this case r;/rg = C'HZ/M1
This is born eut by ebservation; all of the planets maintain eonstant average
distanees from the CG, with their primary while at the same time maintaining

constant angular momenta/energies relative to that. primary,
' L gt 3 RIS

So far we are net yet looking at fhé.ehtifé ﬁietufe regarding planetry
motien sinee we haﬁe only dealt with rotatienal motion, That is motion at
right angles T to the instantaneous direetion from the eommon
CGe. to the masses as they rotate,

We knew from veector mechanies that any instantaneous veetor in the plane of
a rotation ean be resolved into twe instantaneous vector componentes; one

glong the instantaneous radius of retation ealled the radius veetor or the

-

sentral veetor and designated Vi (), and one at right angles to the radius



veator and in the plane of the rotation called the rotational veetor and
designated V, (t). 4/9
The angular momentum comes entirely frem the component of veloeity that ig
perpendieular to the radius veetor; the ocompenent parallel to the radius
veefor contributes nothing to the angular momentum,
The compenent parallel to the radius veetor entirely determines the linear
momentum along the Fadius veetor while the cempenent perpendicular teo the
radius vector contributes nothing to the linear momentum,
AR NI NN
We must noew deal with the component of planetﬁy-véloeity parallel with the
radius vector and the motion whieh it induggs.
This veleeity V; is at it's maximum at the.equilibrium distanee. See app, /
The value of this dimtanee is entirely determined by V, . (Kepler's third law.)
A simple harmonie o@eillation im induded along the radius veetor of
magnitude e = V; /V, = eos © and of peried 1/W. See app. |
Consequently, if we examine the actions of V, and V; at the same time we see
that V; is indusing rotational motiom abeut the cemmon eg.of the masses of
average radii r1 and 32 where 1'1/1»'2 = Mé/M1, while V;) ié ig@uainc simple
ha?mcnio motiens of the masses about their equilibrium distanees of magnitudes
e.r, and e,r, where e = V), /V = cos ©.
From above it can be seen that the combination of these two motions results
in the formation of twe con-foeal ellipses of average radii r1 and T, whére
r1/r2 - MZ/M1 and with each ellipse being of eecentrieity e ~- ©cos o,
W |
The above result agrees exaetly with what we see in the solar system ang
elsewhere, ‘
Kepler's {®irst Law of planetry motien, formulated entirely from ebservational
data, states: "The paths of the planets are ellipses with the sun at one foous".
Allewing for the observational inaceuraaeg in his data, it agrees exaetly
with the abeve theory.
His second law states: "Phe planets sweep out equal areas in equal intervals
of time", This implies that their instantaneous tangential veloeities (v, )

and consequently their angular momenta are eonserved, again as required by



the above theory.
Sy 0
Nowhere ean the above theory be demonstrated to be at varianee with

ebservation while numerous anomalies have been demonstrated for the eurrent

theory of gravitation,
IR AR RN

It may be argued that while the new theory agrees with astronomieal observytion
it has net yet been demonstrated why the apple falls to the grgund when
detatohed from it's tree., If it is not gravitational attraetien pulling
the apple to the ground, what is eausing it to fall 7,
Fortunately, in this day of artifieial satellites it is easier to see what
is aotually happening in this ease than it would have been three hundred
years ageo, when the current theory of gra;itatien was formulated,
Phe apple is falling because it's current angular veloeity (1 revolution/day)
around the earth at it's current distgnee (6,400 km) ia less thagn the
16 revoluﬁioﬁs/day required to establish equilibrium at that distance. (See
sheet HOQ;. An artifiocial satellite sitting on it's launch pad has the
same rotational momentum/unit mass relative to the earth as does the apple
lying on the gréund -  (namely 6,400 km.revolutions/day) and if the surfaee
of the earth were not in the way, both would be aeeelerateéiteward their
equilibrium distenees at that rotational mementum/unit mass, namely 1,849 km,

NESKT v E
ExtraArotational nomentum/unit mass must be imparted to the satellite by
it‘s roeket motors before it is in rotational eéquilibrium with the earth at
6,400 kms and before it will orbit at that distanece,
It should be noted that as both the apple and the satellite (having angular
momenta of 6,400 km,revolutions/day)_are being accelerated toward their
equilibriym distances (without alteration of rotatienal mementa),r.w must
remain oonstant, Thus, as r is being reduced, W:ﬁust be coerrespondingly
increased until 13.w2 equals the Kepler Constant (about 75,000) for the
Earth-satellite system in the units used on sheet /7 , when they would
orbit in equilibrium at a distance froem their eg.s with the Earth of about
1,800 km and with an angular velocity of about 3,5 revolutions/day.

From these oonsi&erations it is no mystery why the apple falls toward the

@arth when detatehed from it's tree,



- If the above is true, why did Newton get his law so wrong 7. s S;/
In attempting to explain this, I will hypothesise that in hig inVestigation
Newton differentiated the 3rd law equation with respeet to r, as I have above:

Viz, Wo.r? = c.xr”' so a/dr(w.r?) = a/exit.z™') so 2.WP.r = ~C.p~2

He would have resognised W2.r and -C.r-2 as forees although he woald not have
understood the energy parameters from whieh they were derived.

inowing nothing about energy and very little about rotational meehanies he
would have reeognised Wz.r as & eentaifugal foree aeting parallel, whieh he coul
confirm by,(say)simply swinging a bueket of water on the end of a rope, and -C/x
as a eentripetal foree, also aeting parallel and in the opposite direetion to
the eentrifugal foree. To establish an eguilibrium distanee these forees would
have to be equal in magnitude and opposite in direetion, at that distance, so th
sentripetal foree, -C/r2 must also be aeting parallel,

Following eorrespondenee with Robert Hooke*, and aeeording to legend, observing
the fall of the apple, he identified this foree as that of attraetioh between
the ear@fand objeets above it'y surfaee, whieh foree unquestionable aeted paralle
Thus his inverse square law of gravitational attrasetion may have been born.
Beeause he was dealing with the equality of forees, he'ass§med that these forees
would have te¢ be continually in existanee to maintain the equilibrium.

Had he ymderstood the parameters from whieh these forees were derived, namely,

the energies M.Wz.r2

and M.C/r he might have seen that these energies eould
maintain their values long after the forees determining them have ceased to appl:
He may then have realdsed that -M.C/r eould represent some forece whieh applied
in the past anu was no longer in operation, anéd so did not involve the apparent
gravitational attrastion, whieh had to be a continually aeting foree.

the magnitude of . .
It seems that Newton did not getﬂhls foree involving an inverse square law

wrong but he misinterpreted it's nature and it's ﬁire@tion and did this mo

eonvineingly that he set theoretical physies baek abomt 300 years,

¥ g
See ryuture work,



"It is interesting to speculzte that if only a gmall fraction {F) of this SIA
force, (say F.Kc/rz), began acting again today and acted over Jjust one cycle
of the oscillation, the workg done by this force would be F.Kc/r. Now, the
only place from which this energy could come is the pOténtial energy of
displacement from infinity, that is F.Kc/r. Thus the residual energy of
displacement must be: (1-F).Kc/r. Remeaber, F is a very small fraction, much.
Thus insufficient energy of displacement from infinity would be left avaliabl
to return the oscillation to it's original equilibrium position hefore the
force operated. Thus a new equilibrium radius of rotation would be establish:

= (1-F).(Ke/r)times v oquitibrium) =17 T (equint

80 that: T2(equilibrium)
If this force acted over n cycles, the equilibrium r would be reduced
accordingly on every cycle and even if the factor (F) was very small on any
given cycle, the accumulated reduction in the equilibrium radius of rotation
could be very great if sufficient cycles (perhaps something even approaching
infinity) were involved over time.

Of course, this is only speculatiom, but I think that this senario possibly
accounts for the general configuration of the solar and other systems that

we see today. The next section will be devoted to trying to refine this
speculation. Since space is not a perfect vacuum;- we see various objects
and other particulate matter out there, this process might not have yet
totally ceased and it might be going on to an unmeasurable extent even today.
Summing up the above speculation so far;- Note that the above force equality
formula: W2.r = —Kc/r2 was derived by differentiating the above energy
equality formula: Wz.rr= Xc/r, with respect to r, over thé—range from«o to r.
At first sight, this result seems to imply that a force of -Kc/r2 is required
to induce an energy of displacement of “c/r OVER ONE CYCLE OF OFERATION.
However, since energy in general is cumulative over more than one cycle, it
is equally wvalid to conclude that a force of (1/n*).Kc/r2 maintained over

n cycles would result in the same cumulative energy change of “c/r.

What could this hypothetical force have been 7.

Well, since all of the galactic systems are assumed to have condensed from

a "dust" cloud, the friction from the cloud itself could have been the'.culprit
After the dust cloud was absorbed, the force ceased.
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WiY DORS wH& APPLE FALL TO Tin GROUHD WHDX DZIACHID FROM IT'S TREE 7.
Attached sheet I shews the ebserved values ef: (1) the equilibrium radius of
rotation, (2} the peried ef rsetation, and (3, the associated amgular velecity, ef
+he meoen and some of the artificial satellites launched and ~ebserved in the past.
The purpese of this exercise was te determine freom these observations, the iepler
Constant (in terms of the units used in the reasurements,, .applicable for Barth
satellites. As seen from column 7, the Kepler Constant feund was 75,369 X 109
in terms of the units used.

Altheugh the apple is net at it's equilibrium distance as listed in rew 7, this
distance cam be used to determine r.,W = 6,400 X 1 and the gngular Ke - r2.W2 =
40,96 X 106 . W; can then use this angular XKe te determine the equilibrium
distance fer this angular Ke per unit mass as fellews:

9

The nepler censtant, as determined fer earth satellites = Wg.r3= 75,369 X 10 =
Wo.r® X r. = 40.96 X v, frem which T = 75,369 % 107/ 40.96 % 10° = 1.849 X 107 Km =
1.849 kn,

Since the apple is rotating at 1 revolutien per day at it's present distance of
6,400 Km and r1W1
W= 6,400/1,489 = 3.46,

‘'hus, an apple growing on it's tree experiences a force of acceleration tending

must equal r2W2 so 6,400 X 1 nmust equal 1,349 X W, se

te move it towatd it's equilibrium distance ef 1,893 Km frem it's cg., witi the
earth, Hewever, while it is still grewing and ripening it is restrained frem
respending te that ferce by an equal and eppesite ferce,raised in the stem which
is helding it teo the tree, After the apple has fully ripened,lthe stem witners
and releases the apple te be accelerated teward it's cg. witha$he earth and
toward it's equilibrium distance at it's current gngular Ke, antil it's

pregress is interrupted by the surface of the earth and se is breught te a
satadstill again. '

Nete, that if the body of the earth were net in the way, the apple would have been
moved right dewn te it's egquilibrium distance (1,849 km,) where the acceleration (a
(farceQ would become zere, lNote alsé, that this force is net zero at the CG,
but becemes zere at the equilibriug distanéegand like all forces of displacement,
is developed linearly from it's zere point, Thus, ay= C X the displacement from
the eguilibrium distance, where C is tie constant of displacement.

L claim that the abovedescribed force is that causing all masses, when released
from above the earth's surface, .=~ " ' to fall te the groundsy ne force of
attraction between masses, as described by Wewton, nor any other force, being
required te account for this phenomenon, The cause of the above force is fully
described abeve, wnile Newton, despite being constantly asked, was never able

to describe why masses attracted each other and indeed was never able to devise

a laboratory experiment to demenstrate masses actually attracting each other

and he made no atﬁem2t4t® correct these @eficienoies in the ﬁ%incipia.

Un the other hand, the présent éuthor has devised a repeatable experiment
caggble of denvincingly demonstrating that masses, even when in very close

rroximity, fail to attract each other,
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THE KEPLER CCUSTANT VARIES LINEARLY WITH THE MASS OF THE PRIMARY.
In the following 'investigation the mass of the Farth is taken as umnity while
the masses of the other primaries are taken as multiples of this mass.
The attached sheets 111, 112, 113 and 114 give the distaneés, periods and
derived Kepler Constants for the satellites of the sun, the Earth, Mars,
Jupitér, Saturn, Uranus, Neptune and for the Earth launched Geostatibnary

satellite, These figures show that for:

The Sun: Xepler constant/mass = 6/332,000 =.000018
~ The Earth " " = ,000018/1 =.000018
Mars " " =,0000015/.11 =.00001%
© Jupiter " " = ,0057/316 =,000018
Satury " " =.0017/94.9  =.000018
Uranus "M = .00026/14.7  =.000018
Neptune =~ ™ "= ,00032/17.2  =.000018
Geostationary " = ,000018/1 =.,000018

Earth satellite, o 5 ,
Only the two safellitesbdf Mars do not %otaily agree with all df,the 9€hér

above results, however these two satellites are very small and diffiecult to
observe while my data on them is over sixty years old. Thus i4 is'aimosﬁ:
certain that the discrepamoy here is due to innaccuracy in my data.

I consider that the above figures clearly demonstrate that the Xepler

constant is linearly proportional to the mass of the dal

the solar system. This even applies the Titam which is retrograr
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-+ AN EXAUINATION OF TNE FORCDS REQUIRSD TO IEEP AN ISOLATED SINGLE MASS IN Tig b’_g
SAME ELLIPTIC ORBIT AS TUE ORBITS OF TEE INDIVIDUAL HASSES IN A TWO MASS SYSTmy,

As a starting point, I observe that since the orbits have to be idintical, the
tangents to the curves have to be in the same direction at the same points in
both cases.
Refering to Fig. Q:
2\% 2\

The angle of rotation at C was found as tan & = (1-e )“.(1-(x-e) )< /x.

1 1 1
Tan o¢ = d/dx.(1-e2)d.(1-(x~e2)% = -(1-e2)‘.(x~e)/(1—(x-e2))2.

The angle of the tangent is alpha.

Tan( e ) = _tan B-tan =< was found according to calculation
-K ) = 1+ tan &, tan-, \){ (i o X‘)}{ N V_L
=¢ -t-e) ) — AW +e
sheet Q.1 as tan (B- =) = (1 ~Cx -

R 7T e L S

It will be observed that YL which is represented by the numerator in the above

expression involves three different powers of the variable x, so it cannot be
constant around the orbit as is the #ase with the two mass system where

. 2.3
V, = (1-e")* and so is constant,

Similarly, V“ which is represented by the denomenator in the above expression, is

vastly different from V,; = e.(1-e).{1+. cos &)/(1-e cos ©) in the two mass systenm

R RAHKRHHNIH

V-

The above result clearly indicates that a totally different Velocity regime, and
consequently a totally different force regime is required to keep an isolated
single mass in elliptic orbit than is required to keep the masses in a two mass
system in the same orbits,

The only force required to maintain the masses in a two mass system in stable
orbit is that maintaining the simple harmonic oscillation about the equilibrium
distance, which distance is constant because of the constant rotational KE
relationship between the two orbiting masses, Note that this force is
internally generated and then dissipated over the Trotational cycle of the masses,
An isolated single mass obviously has no rotational sartner and thus no rotational
EE relative to one and so has no equilibrium distance relative to one,

Note too, that since no mass system exists to generate internal forces, any force
applied to the mass must be LATBRNALLY applied,

The forces maintaining the orbit of an isolated single mass would heve to be

externall impressed according to lewton'g laws,
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AN HIFULREDLD ON L0 SSELNLLSLL PERLUVLC. MUTLON OF THE SUN, INDUCED BY IT'S PLANETS.
'I have long suspeeted that the sunm and it's planets are reaeting with eaeh other ga
through their eommon eenters of gravity, to adjust their distanees and henee their
.respeetive angular veloeities in order to establish and/or tomaintain, some kind of
dynamie equilibrium within the solar systenm. Bode's Law gives a elue to thig
hypothesis whieh I will now try to further develop,

Itgoint out several peitinemt faets bearing om this hypothesis, these are:

1), The sun is in rotational motion along with it's nine planets whieh are
rotating with different periods and at different distanees, ¢o 1t is reeeiving
through it's eommon eenters of gravity with those planets, nine different rotational
inputs of various magnitudes and frequeneies,from them, |
2). THE SUN CAN ONLY BE IN ONE PLACE AT ANY d&VEN TIME WHILE THE DIFFERENT iNPUTS
ARE HEQUIRING IT TO BE IN NINE SLIGHTLY DIFFEREN PLACES AT THE ONE TIME,

3). A logieal consequenee of eondition 2., that is: the souree of a moveable forase.
aeting on an _immoveable objeet, is the foreed movement of the moveable sourse,

4), Thus, if the nine separate periodie inputs from the planets were ineompatible
with some infinitely periodie ﬁotiom of the suh under eonditiom 2, it might be
pogsible under sénditiom 3y for the sum, aeting through it's eommon eenters of
gravity with the individual planets, to adjust their rotational‘dlstanses (prlnaiple
of moments) and cecomsequently their angular veloeities, in order to establish an’

iinput regime somensurate with an infinitely periodie motion of the sun, thus

stabilising the situation,
5). The eondition for the establighment of an infinitely stable regime is that all

of the input frequeneies must be INTEGRAL MULTIPLES of some basie frequeney.

® o000 0o

While the figures on the following two pages do not establish with 100% eertainty
this hypothesis, they indieate with g very very high probability that this is

what has aetually happened. Sinee all of the planets eommon CG with the sun are
not eoineident, the siderial planetry frequeneies as measued from the sun would be
different from those as measured from the earth, As those as measured from the sun
are required to validate the series below and these are not available, I had to use
those as measured from the earth., This faet eould aecount for the faet that the
frequeneies listed below are not EXACT multiples of the basie frequeney as would be

required to definitely establish the validity of the hypothesis.
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lepler's laws are of no help in determining the motions of isolated single masses
when subject to externally impressed forces but do have at least limited
validity in relation to the solar system ‘which is of course a mass system)

where only internally generated cyclie forces are involved, While they do
accurately describe some aspects of planetary motion, they do not; for example
include the cyclic oscillations seen about the equilibrium distances in all

-~

masses in the gystenm, These motions had not been identified in Hepler's tinme.,

In view of this, I consider that a closer look at Kepler's laws (after 400
vears), with a view to amendment and extension thereto may be appropriate,
The following should be regarded as a halting first attempt to update the laws

,
so that they agree more ¢losely with observation.

b
sk

S SRS
In attempting to produce a more satisfactory group of statements to overcome
the abovenentioned problem T will begin by listing a group of short and simple
statements which together more closely desceribe what we see happening in the
solar system, These are:

1). Bach planet is rotating with constant angulaz momentum about it's common

B _ which is ' the same
center of gravity with the sun is also rotating with,equal angular momentum

about the sgme center of gravity. N

'2}. While rotating eaeh planet is also oséillating along the rotating

diameter ecounnecting it with the sun, ébout an equilibrium distance from their
common center of gravity, while the éuh is aléb performing a similar oscillation,
3). The equilibrium distances of each of the planets are inversely proportional

ran

to their rotational KEs per unit mass relative to the sun,

q

4). The periods of the above oseillations are equal to each planet's period
of rotation,

5}. The amplitude of the oseillation of each planet relative to it's
equilibrium distanee, {(known as the oscillation faotor), is determined by the
ratio of it's linear momentum (V) ) at the equilibrium distance, to it'y

total momentum iV” +V, ), at that distance,

€)', The combined motions of each of the planets result in it's path being that

of an ellipse of gverage radius from one focus of that ellipse being the

equilibrivm distance as defined above and of eccentricity equal te the above

-

defined oscillation factor,
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In the solar system, all of the satellites of the sun are seen to be rotaflng

about an axis which is approximately parallel with the axis of rotation of

the sun while gt the same time they are orbiting at close to the plane of

the eecliptie, In view of this faect I believe that two more hypothetical

"] aws"should be provisionally attached to the above ligt. These"laws" were
previously detailed during the investigation. Thege are:

1) "Barnett's Law". When mgsses have seoond or higher order of rotation
relative to a mass with first order rotation about some axis, the axes of rotats
of the masses with higher order rotation will rotate so that they align o
themselves with the axis of first order rotation and so that the sense of the
rotgtion is the sgme in all sases, about that axis,

2).‘ A second law of higher order rotation might be stated as follows:

'When masses have higher order of rotation relative to a mass with first

order rotation about some axis, and after the axes of rotatien of these

magses with higher order of rotation have aligned themselves with the Primary
axis of rotatien according to "Barnmett's Law", the PLANES OF ROTATION of

these masses with higher order rotation will alse align themselvee with the

‘ i

"plane of rgtaticn of the primary mass,

(

P HH KR _
I make no claim that the abeve list in amy way constitutes a definitive set of

‘statements defining the actions of internally generated forces on multimass systems,

They are only listed as a flrst step in trying to understand this daunting subject.
HHKEHREARK #

While, as pointed out above, Kepler's.laws are of no help whem dealing with the

actionsg of externallg impressed forces on isolated masses, Newton's laws have, to

date, been of limited use when dealing with the effects of internally induced

forces in multimass gystems, For example, they are not able to explain or to

give a derivation fér the two hypothetical "laws" listed above on this page

It'might be that a different dynemie approach to the understanding of multimass

problems could profitably be considered,
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- ON THE POSSIBLE NEED FOR A NEW APPROACH IN THE APPIL.ICATION OF DYNAMICS TO MASS bISTEP
It was seen on page j7 that a totally different force regime is required to keep
a single isolated mass in elliptic orbit than that which-: is required to keep
the masses in a two mass system in the same orbits,

Furthermore, it was seen that the only force required to keep the two masses in
a two mass system in stable orbit was internally generated and then dissipated

over the system cycle while the forces needed to maintain an anattached mass in
the same orbit as seen in the two mass system, have to be externally impressed.
In view of these observations it might be coneluded that mass systems in which

internally generated stabilising forces operate diring an overall stable cycle

as seen in fig, (1.K), ete, may require a different analytical approacﬁjthak;pc
those cases where singleisolated masses are subject to externally impressed

AMD W14 )
forces,, as are accurately dealt with according to Newton' Laws,

It may be that the realm of dynamics could be profitably divided into two sections
the first one dealing with the actions of externally impressed forces on single
masses according to Newton's laws, and with application in macro-technology, etc,
while the secoﬁd section deals with cases where internally generated forces
operate on multimass systems, and with application to the investigation of

those systems,

The second section may take the form of a much expanded list of working hypoﬁheses
derived through experiment and testing, augmenting the list on Pages?ﬁﬁwZM%Q.

I suspect that this,much expanded list will become necessary before significant
progress can be achieved in the dynamic and structural understanding of such

mass systems as atoms, mollecules, galaxies ete,

Why cannot laboratory scale mass systems be generagted and tested in space 7,
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THE RANGE OF REALITIES AND HENCE THE DOMAINS OF CONICS FOR VARIOUS VALUES OF e,

Con-focal equidimensional conics can be expressed in rectangular coordinates
as follows: Whichever is real.

. J s
y = ( %(1-e2)%.(t(1-(x-e)2)§-
. . 2 2 + 2
Consider first the case where e = 0, ¥ = 1.(1-x)° =2 (1-x),
Thus the loeii are eenfocal circles centered on the origin and of unit radii,

The domaine of this funetion is from -1 to +1,

W W KK WK
1 Al 7'5

1 i
In the case where O<e<i, then +(1-e2)‘ is ,real,while +(1-(x-e)2)2 is real
in the range: x=(e-1) to x=(e+1) and from x = =(e=1) to x = =(e+1).
Since both factors must be real to produce a real product, the ellipse is real
4

only within these ranges .in x,
¥ N KW ¥

D 1
When e >1, only -(1-32)2 is real,while only -(1-(x-e)2)§ is real when x is
in the range between -(e-1) and - infinity and between +(e-1) and + infinity,

Thus the hyperbola is real only within the ranges x = +(e-1) to + infinity.
HRHHRHN

That is, the domaine of the ellipse is from +(e-1) to Z(e+1) while that of the
eorresponding hyperbola is from +(e-1) to ¥ infinity.

This indicates that, not only do the forms of the functions change as e passes
through 1 but also that the signs of the domains change alse, That is, the

domaine of say the mainly right hand side ellipse in fig 1e would beecome the
mainly left hand side hyperbola and vice versa, if the value of e passed through 1.

This observation will be seen to be of significance later in the discussion,

+ 2 *******1* 2
In polar coordinates r = =(1-e“+ex) = =(1-e )/(:(1-e cos®)). See fig. le.

We come now to the case where e = 1,

In this case (1-92) must be zero unless (1-e cos o) is infinity, because cos &
cannot be greater than 1, Thus r must be zero for all values of €.

Thus the domains of confocal conics when e = 1 must be circles of zero radius

about the origin so they must be coineident points at the origin,of no dimension,

W Fe I KX K%

Later in the discussion it is shown that the angle of the assymptotes in the

1

hyperbola is given by: & = sec  e. Thus when e = infinity, € = cos-1(1/e)

= 905_1(1/infinity) = cos”10° s0 & = 90°,

Since the distance from the origin to the intersection of the hyperbola with the



*

(o

x-axis is t(e-1), the loeii of the conies when e = infinity are straight

lines parallel to the y-axis and at distances of (infinity - 1) on either

side of the Origin. EYRVRVEE RV )

The above conclusions indicate that the transitional form between the
ellipse and the hyperbola, (that is, when e=1), is a dimensionless dot at
the origin., If this is true, where dees that conclusion leave the tradionally

accepted transition formj- the parabola . ?, This gquestion will be examined now,
XA IR R NF

PHE TRANSITIONAL FORM BETWEEN THE ELLIPSE AND THE HYPERBOLA,.
(The parabola versus the dot at the origin.)

First of all it should be noted that all par§bolas represent quadratics of the
form: y = A.x2 + B.,x + C which by axial transformation can be eonverted to
yz = 4.d.%,
On the other hand as seen above, all conics can be represented by the equation:
y = (i(1-92)%.( t(1-(x-e)2)%.v Phis form is certainly not a quadratic.,
Why does the parabola seem to be the transitional form %,
To see this, let us look at the way parabolas are defined and developed,

L
The figure below shows a line and a point NOP ON THIS LINE,

AxlS  0f PAMBOLA

VEﬁT%+

Phe point P is called the focus of the parabola and the line L is known as the
diectrix of the eurve.

Phe locus of points equidisfant from P and L is known as a Parabola.

The line through P and perpendicular to L is known as the axis of the parabola,
The point at which the axis intersects the curve is called the vertex.

If we place the origin at the vertex and the foéus at some non zero

coordinate dee can derive the formula y2 = 4.,d.x and every parabola of the
form y = A.x2 + B.x + C can be converted by transformation to the form y2=4dx.
For all this to be validly deducible P must not be on L or the square on the
hypotenuse of a right angled triangle would have to be equal to the square

on ONE of it's sides.
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